Information-theoretic feature selection with segmentation-based folded principal component analysis (PCA) for hyperspectral image classification

主成分分析 模式识别(心理学) 高光谱成像 人工智能 相互信息 特征选择 熵(时间箭头) 数学 计算机科学 核主成分分析 核方法 支持向量机 物理 量子力学
作者
Md. Palash Uddin,Md. Al Mamun,Masud Ibn Afjal,Md. Ali Hossain
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:42 (1): 286-321 被引量:78
标识
DOI:10.1080/01431161.2020.1807650
摘要

Hyperspectral image (HSI) usually holds information of land cover classes as a set of many contiguous narrow spectral wavelength bands. For its efficient thematic mapping or classification, band (feature) reduction strategies through Feature Extraction (FE) and/or Feature Selection (FS) methods for finding the intrinsic bands’ information are typically applied. Principal Component Analysis (PCA) is a frequently employed unsupervised linear FE method whereas cumulative-variance accumulation is used for selecting top features from PCA data. However, PCA can fail to extract intrinsic structure of HSI due to global variance consideration and domination by visible and near infrared bands while cumulative-variance accumulation has no capability to exploit non-linear relationships among the transformed features produced by PCA-based FE methods. Consequently, we propose an information theoretic normalized Mutual Information (nMI)-based minimum Redundancy Maximum Relevance (mRMR) non-linear measure to select the intrinsic features from the transformed space of our previously proposed Segmented-Folded-PCA (Seg-Fol-PCA) and Spectrally Segmented-Folded-PCA (SSeg-Fol-PCA) FE methods. We extensively analyse the effectiveness of the proposed unsupervised FE and supervised FS combinations Seg-Fol-PCA-mRMR and SSeg-Fol-PCA-mRMR with that of PCA-based existing linear and non-linear state-of-the-art methods. In addition, cumulative variance-based top features pick-up strategy is considered with all FE methods and Renyi quadratic entropy-based FS is used with Kernel Entropy Component Analysis (Ker-ECA). The experimental results illustrate that SSeg-Fol-PCA-mRMR and Seg-Fol-PCA-mRMR obtain highest classification result e.g. 95.39% and 95.03% respectively for agricultural Indian Pines HSI, and 96.58% and 95.30% respectively for urban Washington DC Mall HSI while the classification accuracies using all original features of the HSIs are 70.28% and 91.90% respectively. Moreover, the proposed SSeg-Fol-PCA-mRMR and Seg-Fol-PCA-mRMR outperform all investigated combinations of FE and FS using the real HSI datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
687完成签到,获得积分10
刚刚
顺利的琳发布了新的文献求助10
刚刚
TiAmo完成签到 ,获得积分10
1秒前
冷漠的布丁完成签到,获得积分10
1秒前
yy发布了新的文献求助10
2秒前
Bo完成签到,获得积分10
2秒前
jkhjkhj发布了新的文献求助10
3秒前
Annieqqiu完成签到 ,获得积分10
5秒前
Shan完成签到 ,获得积分10
5秒前
6秒前
780发布了新的文献求助10
7秒前
酷波er应助华华采纳,获得10
7秒前
7秒前
小董完成签到,获得积分10
8秒前
是奶柚啊完成签到,获得积分10
9秒前
9秒前
义气凡霜完成签到,获得积分10
9秒前
nannan完成签到,获得积分10
10秒前
Lee发布了新的文献求助30
10秒前
zzz完成签到,获得积分10
11秒前
11秒前
传奇3应助无聊的太清采纳,获得10
11秒前
薯仔完成签到,获得积分10
11秒前
晓晓发布了新的文献求助10
12秒前
12秒前
780完成签到,获得积分10
13秒前
12x发布了新的文献求助10
14秒前
stdbot发布了新的文献求助10
14秒前
14秒前
maomao完成签到,获得积分10
15秒前
我的法尼玛完成签到,获得积分10
15秒前
尊敬的从凝完成签到,获得积分10
15秒前
seven完成签到,获得积分10
16秒前
PetrichorF完成签到 ,获得积分10
17秒前
hhkk发布了新的文献求助10
18秒前
大模型应助kkkk采纳,获得10
19秒前
隐形曼青应助丫头采纳,获得30
19秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296947
求助须知:如何正确求助?哪些是违规求助? 4445951
关于积分的说明 13837832
捐赠科研通 4331031
什么是DOI,文献DOI怎么找? 2377382
邀请新用户注册赠送积分活动 1372652
关于科研通互助平台的介绍 1338217