Information-theoretic feature selection with segmentation-based folded principal component analysis (PCA) for hyperspectral image classification

主成分分析 模式识别(心理学) 高光谱成像 人工智能 相互信息 特征选择 熵(时间箭头) 数学 计算机科学 核主成分分析 核方法 支持向量机 量子力学 物理
作者
Md. Palash Uddin,Md. Al Mamun,Masud Ibn Afjal,Md. Ali Hossain
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:42 (1): 286-321 被引量:78
标识
DOI:10.1080/01431161.2020.1807650
摘要

Hyperspectral image (HSI) usually holds information of land cover classes as a set of many contiguous narrow spectral wavelength bands. For its efficient thematic mapping or classification, band (feature) reduction strategies through Feature Extraction (FE) and/or Feature Selection (FS) methods for finding the intrinsic bands’ information are typically applied. Principal Component Analysis (PCA) is a frequently employed unsupervised linear FE method whereas cumulative-variance accumulation is used for selecting top features from PCA data. However, PCA can fail to extract intrinsic structure of HSI due to global variance consideration and domination by visible and near infrared bands while cumulative-variance accumulation has no capability to exploit non-linear relationships among the transformed features produced by PCA-based FE methods. Consequently, we propose an information theoretic normalized Mutual Information (nMI)-based minimum Redundancy Maximum Relevance (mRMR) non-linear measure to select the intrinsic features from the transformed space of our previously proposed Segmented-Folded-PCA (Seg-Fol-PCA) and Spectrally Segmented-Folded-PCA (SSeg-Fol-PCA) FE methods. We extensively analyse the effectiveness of the proposed unsupervised FE and supervised FS combinations Seg-Fol-PCA-mRMR and SSeg-Fol-PCA-mRMR with that of PCA-based existing linear and non-linear state-of-the-art methods. In addition, cumulative variance-based top features pick-up strategy is considered with all FE methods and Renyi quadratic entropy-based FS is used with Kernel Entropy Component Analysis (Ker-ECA). The experimental results illustrate that SSeg-Fol-PCA-mRMR and Seg-Fol-PCA-mRMR obtain highest classification result e.g. 95.39% and 95.03% respectively for agricultural Indian Pines HSI, and 96.58% and 95.30% respectively for urban Washington DC Mall HSI while the classification accuracies using all original features of the HSIs are 70.28% and 91.90% respectively. Moreover, the proposed SSeg-Fol-PCA-mRMR and Seg-Fol-PCA-mRMR outperform all investigated combinations of FE and FS using the real HSI datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科目三应助彭栋采纳,获得10
4秒前
方文浩发布了新的文献求助10
4秒前
ding应助YWang采纳,获得10
7秒前
7秒前
林宝雯关注了科研通微信公众号
12秒前
15秒前
斯文败类应助GGBOND采纳,获得10
15秒前
星辰大海应助科研通管家采纳,获得10
15秒前
李健的小迷弟应助GGBOND采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
16秒前
大模型应助科研通管家采纳,获得10
16秒前
圆锥香蕉应助科研通管家采纳,获得20
16秒前
星辰大海应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
Bio应助科研通管家采纳,获得30
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
17秒前
20秒前
22秒前
22秒前
Dotson发布了新的文献求助10
23秒前
sinsinsin发布了新的文献求助10
24秒前
CodeCraft应助娇气的天亦采纳,获得10
25秒前
26秒前
权思远发布了新的文献求助10
26秒前
彭栋发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
27秒前
李爱国应助收集快乐采纳,获得10
28秒前
守墓人完成签到 ,获得积分10
29秒前
30秒前
科研通AI5应助xiaoxiao采纳,获得10
33秒前
顾矜应助权思远采纳,获得10
33秒前
苯氮小羊完成签到,获得积分10
33秒前
35秒前
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105