Information-theoretic feature selection with segmentation-based folded principal component analysis (PCA) for hyperspectral image classification

主成分分析 模式识别(心理学) 高光谱成像 人工智能 相互信息 特征选择 熵(时间箭头) 数学 计算机科学 核主成分分析 核方法 支持向量机 物理 量子力学
作者
Md. Palash Uddin,Md. Al Mamun,Masud Ibn Afjal,Md. Ali Hossain
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:42 (1): 286-321 被引量:78
标识
DOI:10.1080/01431161.2020.1807650
摘要

Hyperspectral image (HSI) usually holds information of land cover classes as a set of many contiguous narrow spectral wavelength bands. For its efficient thematic mapping or classification, band (feature) reduction strategies through Feature Extraction (FE) and/or Feature Selection (FS) methods for finding the intrinsic bands’ information are typically applied. Principal Component Analysis (PCA) is a frequently employed unsupervised linear FE method whereas cumulative-variance accumulation is used for selecting top features from PCA data. However, PCA can fail to extract intrinsic structure of HSI due to global variance consideration and domination by visible and near infrared bands while cumulative-variance accumulation has no capability to exploit non-linear relationships among the transformed features produced by PCA-based FE methods. Consequently, we propose an information theoretic normalized Mutual Information (nMI)-based minimum Redundancy Maximum Relevance (mRMR) non-linear measure to select the intrinsic features from the transformed space of our previously proposed Segmented-Folded-PCA (Seg-Fol-PCA) and Spectrally Segmented-Folded-PCA (SSeg-Fol-PCA) FE methods. We extensively analyse the effectiveness of the proposed unsupervised FE and supervised FS combinations Seg-Fol-PCA-mRMR and SSeg-Fol-PCA-mRMR with that of PCA-based existing linear and non-linear state-of-the-art methods. In addition, cumulative variance-based top features pick-up strategy is considered with all FE methods and Renyi quadratic entropy-based FS is used with Kernel Entropy Component Analysis (Ker-ECA). The experimental results illustrate that SSeg-Fol-PCA-mRMR and Seg-Fol-PCA-mRMR obtain highest classification result e.g. 95.39% and 95.03% respectively for agricultural Indian Pines HSI, and 96.58% and 95.30% respectively for urban Washington DC Mall HSI while the classification accuracies using all original features of the HSIs are 70.28% and 91.90% respectively. Moreover, the proposed SSeg-Fol-PCA-mRMR and Seg-Fol-PCA-mRMR outperform all investigated combinations of FE and FS using the real HSI datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老迟到的碧萱完成签到,获得积分20
刚刚
刚刚
淡定发布了新的文献求助10
1秒前
思芋奶糕发布了新的文献求助10
1秒前
月yue发布了新的文献求助10
1秒前
科研通AI5应助鱼鱼鱼采纳,获得10
1秒前
Wang完成签到,获得积分10
1秒前
1秒前
英姑应助食分子采纳,获得10
1秒前
苟子发布了新的文献求助10
2秒前
2秒前
112233完成签到,获得积分10
3秒前
哈哈镜发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
wanci应助江湖夜雨十年灯采纳,获得10
4秒前
4秒前
浮游应助TaiLongYang采纳,获得10
4秒前
栗栗完成签到 ,获得积分10
5秒前
5秒前
gx完成签到 ,获得积分10
5秒前
zuo发布了新的文献求助10
6秒前
清爽冬卉发布了新的文献求助10
6秒前
传奇3应助牛牛眉目采纳,获得10
7秒前
高兴慕儿完成签到,获得积分10
8秒前
112233发布了新的文献求助10
8秒前
xiong完成签到 ,获得积分10
8秒前
小蘑菇应助思芋奶糕采纳,获得10
8秒前
你好发布了新的文献求助10
9秒前
归途完成签到 ,获得积分10
9秒前
9秒前
10秒前
Aurora完成签到,获得积分10
10秒前
10秒前
11秒前
幽默依凝完成签到,获得积分10
11秒前
伯。完成签到,获得积分10
11秒前
jack完成签到,获得积分20
12秒前
12秒前
xiong关注了科研通微信公众号
12秒前
思源应助小谭采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4577004
求助须知:如何正确求助?哪些是违规求助? 3996170
关于积分的说明 12371644
捐赠科研通 3670203
什么是DOI,文献DOI怎么找? 2022678
邀请新用户注册赠送积分活动 1056753
科研通“疑难数据库(出版商)”最低求助积分说明 943949