亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Information-theoretic feature selection with segmentation-based folded principal component analysis (PCA) for hyperspectral image classification

主成分分析 模式识别(心理学) 高光谱成像 人工智能 相互信息 特征选择 熵(时间箭头) 数学 计算机科学 核主成分分析 核方法 支持向量机 物理 量子力学
作者
Md. Palash Uddin,Md. Al Mamun,Masud Ibn Afjal,Md. Ali Hossain
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:42 (1): 286-321 被引量:78
标识
DOI:10.1080/01431161.2020.1807650
摘要

Hyperspectral image (HSI) usually holds information of land cover classes as a set of many contiguous narrow spectral wavelength bands. For its efficient thematic mapping or classification, band (feature) reduction strategies through Feature Extraction (FE) and/or Feature Selection (FS) methods for finding the intrinsic bands’ information are typically applied. Principal Component Analysis (PCA) is a frequently employed unsupervised linear FE method whereas cumulative-variance accumulation is used for selecting top features from PCA data. However, PCA can fail to extract intrinsic structure of HSI due to global variance consideration and domination by visible and near infrared bands while cumulative-variance accumulation has no capability to exploit non-linear relationships among the transformed features produced by PCA-based FE methods. Consequently, we propose an information theoretic normalized Mutual Information (nMI)-based minimum Redundancy Maximum Relevance (mRMR) non-linear measure to select the intrinsic features from the transformed space of our previously proposed Segmented-Folded-PCA (Seg-Fol-PCA) and Spectrally Segmented-Folded-PCA (SSeg-Fol-PCA) FE methods. We extensively analyse the effectiveness of the proposed unsupervised FE and supervised FS combinations Seg-Fol-PCA-mRMR and SSeg-Fol-PCA-mRMR with that of PCA-based existing linear and non-linear state-of-the-art methods. In addition, cumulative variance-based top features pick-up strategy is considered with all FE methods and Renyi quadratic entropy-based FS is used with Kernel Entropy Component Analysis (Ker-ECA). The experimental results illustrate that SSeg-Fol-PCA-mRMR and Seg-Fol-PCA-mRMR obtain highest classification result e.g. 95.39% and 95.03% respectively for agricultural Indian Pines HSI, and 96.58% and 95.30% respectively for urban Washington DC Mall HSI while the classification accuracies using all original features of the HSIs are 70.28% and 91.90% respectively. Moreover, the proposed SSeg-Fol-PCA-mRMR and Seg-Fol-PCA-mRMR outperform all investigated combinations of FE and FS using the real HSI datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎明完成签到,获得积分10
2秒前
零_完成签到,获得积分10
3秒前
负责代珊完成签到,获得积分10
4秒前
SciGPT应助123采纳,获得10
4秒前
4秒前
黎明发布了新的文献求助10
6秒前
研友_VZG7GZ应助怦然心动采纳,获得10
7秒前
领导范儿应助王老裂采纳,获得80
8秒前
10秒前
brwen完成签到,获得积分10
13秒前
dax大雄完成签到 ,获得积分10
17秒前
20秒前
22秒前
23秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得30
24秒前
共享精神应助科研通管家采纳,获得10
24秒前
田様应助科研通管家采纳,获得10
24秒前
ding应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
Hello应助科研通管家采纳,获得10
24秒前
ZZZ完成签到,获得积分10
27秒前
羊羊羊发布了新的文献求助10
27秒前
歪歪吸发布了新的文献求助10
27秒前
28秒前
xiaokun发布了新的文献求助10
28秒前
123发布了新的文献求助10
28秒前
王老裂发布了新的文献求助80
33秒前
歪歪吸完成签到,获得积分10
34秒前
北一君完成签到,获得积分10
34秒前
何靖馥琳完成签到,获得积分10
39秒前
丘比特应助库里强采纳,获得10
41秒前
LJL完成签到 ,获得积分10
45秒前
yong完成签到 ,获得积分10
55秒前
1分钟前
852应助赫贞采纳,获得10
1分钟前
1分钟前
MRu发布了新的文献求助10
1分钟前
1分钟前
Dr_Zhan完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185944
求助须知:如何正确求助?哪些是违规求助? 4371293
关于积分的说明 13612012
捐赠科研通 4223623
什么是DOI,文献DOI怎么找? 2316534
邀请新用户注册赠送积分活动 1315159
关于科研通互助平台的介绍 1264147