催化作用
格式化
水煤气变换反应
活动站点
反应中间体
化学
亚稳态
氢
光化学
化学物理
有机化学
作者
Nicholas C. Nelson,Manh‐Thuong Nguyen,Vassiliki‐Alexandra Glezakou,Roger Rousseau,János Szanyi
出处
期刊:Nature Catalysis
[Springer Nature]
日期:2019-09-23
卷期号:2 (10): 916-924
被引量:109
标识
DOI:10.1038/s41929-019-0343-2
摘要
Definitive experimental proof for catalytic pathways and active sites during the low-temperature water-gas shift reaction remains elusive. Herein, we combine spectroscopic, kinetic and computational analyses to address the decades-long mechanistic controversy by studying the reverse water-gas shift over Pd/Al2O3. Isotopic transient kinetic analysis established the minor role of the formate intermediate, whereas hydrogen titration experiments confirmed the intermediacy of carboxyl. The ability to decouple the parallel formate and carboxyl pathways led to the identification of a distinct active site that exhibits regio- and chemoselective hydrogen addition to CO2 to yield the carboxyl intermediate. The metastable active site is formed in situ, resulting in hydroxylation of the metal–support interface and electronic restructuring. Atomistic simulations of the active site electronic structure and mechanistic landscape provided a framework that is consistent with experimental observations. Our study highlights the dynamic creation of a coordinatively unsaturated metal site caused by substrate adsorption on an adjacent support site. Due to its importance, the water-gas shift reaction has been the subject of numerous studies; however, a unifying mechanistic picture has not yet emerged. Now, a combination of spectroscopic, kinetic and computational methods reveal the crucial role of carboxyl intermediate for this centuries-old process.
科研通智能强力驱动
Strongly Powered by AbleSci AI