亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Reinforcement Learning Framework for Frame-by-Frame Plaque Tracking on Intravascular Optical Coherence Tomography Image

计算机科学 光学相干层析成像 帧(网络) 计算机视觉 人工智能 跟踪(教育) 散斑噪声 强化学习 斑点图案 放射科 医学 心理学 教育学 电信
作者
Gongning Luo,Suyu Dong,Kuanquan Wang,Dong Zhang,Yue Gao,Xin Chen,Henggui Zhang,Shuo Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 12-20 被引量:4
标识
DOI:10.1007/978-3-030-32239-7_2
摘要

Intravascular Optical Coherence Tomography (IVOCT) is considered as the gold standard for the atherosclerotic plaque analysis in clinical application. A continuous and accurate plaque tracking algorithm is critical for coronary heart disease diagnosis and treatment. However, continuous and accurate plaque tracking frame-by-frame is very challenging because of some difficulties from IVOCT imaging conditions, such as speckle noise, complex and various intravascular morphology, and large numbers of IVOCT images in a pullback. To address such a challenging problem, for the first time we proposed a novel Reinforcement Learning (RL) based framework for accurate and continuous plaque tracking frame-by-frame on IVOCT images. In this framework, eight transformation actions are well-designed for IVOCT images to fit any possible changes of plaque’s location and scale, and the spatio-temporal location correlation information of adjacent frames is modeled into state representation of RL to achieve continuous and accurate plaque detection, avoiding potential omissions. What’s more, the proposed method has strong expansibility, because the fully-automated and semi-automated tracking patterns are both allowed to fit the clinical practice. Experiments on the large-scale IVOCT data show that the plaque-level accuracy of the proposed method can achieve 0.89 and 0.94 for the fully-automated tracking pattern and semi-automated tracking pattern respectively. This proves that our method has big application potential in future clinical practice. The code is open accessible: https://github.com/luogongning/PlaqueRL .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
狂野的水杯完成签到,获得积分10
5秒前
9秒前
量子星尘发布了新的文献求助10
11秒前
15秒前
云是完成签到 ,获得积分10
19秒前
48秒前
little佳完成签到 ,获得积分10
49秒前
49秒前
54秒前
tang发布了新的文献求助10
58秒前
脑洞疼应助枝江泥头车采纳,获得10
1分钟前
tang完成签到,获得积分10
1分钟前
1分钟前
tutu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
judy007发布了新的文献求助10
1分钟前
JamesPei应助枝江泥头车采纳,获得10
1分钟前
2分钟前
枝江泥头车完成签到,获得积分10
2分钟前
h0jian09完成签到,获得积分10
2分钟前
2分钟前
梨子茶完成签到,获得积分10
3分钟前
含蓄夏瑶发布了新的文献求助30
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
含蓄夏瑶完成签到,获得积分10
3分钟前
3分钟前
Yuna96发布了新的文献求助10
3分钟前
4分钟前
liwang9301完成签到,获得积分10
4分钟前
LJJ完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957044
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111230
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787735
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264