计算机科学
横截面
输送带
材料科学
光学
物理
机械工程
结构工程
工程类
作者
Zhen Che,Wenguo Zhu,Yao-Ming Huang,Yu Zhang,Linqing Zhuo,Pengpeng Fan,Zhibin Li,Huadan Zheng,Wenjin Long,Wentao Qiu,Yunhan Luo,Jun Zhang,Jinghua Ge,Jianhui Yu,Zhe Chen
出处
期刊:Photonics Research
[The Optical Society]
日期:2020-05-05
卷期号:8 (7): 1124-1124
被引量:6
摘要
Opto-conveyors have attracted widespread interest in various fields because of their non-invasive and non-contact delivery of micro/nanoparticles. However, the flexible control of the delivery distance and the dynamic steering of the delivery direction, although very desirable in all-optical manipulation, have not yet been achieved by opto-conveyors. Here, using a simple and cost-effective scheme of an elliptically focused laser beam obliquely irradiated on a substrate, a direction-steerable and distance-controllable opto-conveyor for the targeting delivery of microparticles is implemented. Theoretically, in the proposed scheme of the opto-conveyor, the transverse and longitudinal resultant forces of the optical gradient force and the optical scattering force result in the transverse confinement and the longitudinal transportation of microparticles, respectively. In this study, it is experimentally shown that the proposed opto-conveyor is capable of realizing the targeting delivery for microparticles. Additionally, the delivery distance of microparticles can be flexibly and precisely controlled by simply adjusting the irradiation time. By simply rotating the cylindrical lens, the proposed opto-conveyor is capable of steering the delivery direction flexibly within a large range of azimuthal angles, from − 75 ° to 75°. This study also successfully demonstrated the real-time dynamic steering of the delivery direction from − 45 ° to 45° with the dynamical rotation of the cylindrical lens. Owing to its simplicity, flexibility, and controllability, the proposed method is capable of creating new opportunities in bioassays as well as in drug delivery.
科研通智能强力驱动
Strongly Powered by AbleSci AI