Nanoscale topological defects and improper ferroelectric domains in multiferroic barium hexaferrite nanocrystals

多铁性 铁电性 凝聚态物理 材料科学 纳米尺度 纳米晶 纳米技术 拓扑(电路) 物理 电介质 光电子学 数学 组合数学
作者
Dmitry Karpov,Zhen Liu,Anil Kumar,Boris Kiefer,Ross Harder,Turab Lookman,Edwin Fohtung
出处
期刊:Physical review 卷期号:100 (5) 被引量:19
标识
DOI:10.1103/physrevb.100.054432
摘要

Multiferroic materials that demonstrate magnetically driven ferroelectricity have fascinating properties such as magnetic (electric) field-controlled ferroelectric (magnetic) response that can be used in transformative applications including fast-writing, power-saving, and nondestructive data storage technologies in next-generation computing devices. However, since multiferroicity is typically observed at low temperatures, it is highly desirable to design multiferroic materials that can operate at room temperature. Here we show that $\mathrm{BaF}{\mathrm{e}}_{12}{\mathrm{O}}_{19}$ is a promising room-temperature multiferroic material, and we unravel in three dimensions (3D) the dynamics of topological defects, strain, and improper ferroelectric domains driven by electric fields in individual $\mathrm{BaF}{\mathrm{e}}_{12}{\mathrm{O}}_{19}$ nanocrystals. Using Bragg coherent diffractive imaging in combination with group-theoretical analysis, first-principles density functional calculations of phonons, and Landau phase-field theory we uncover in 3D the dynamics of topological defects, strain, and improper ferroelectric domains driven by electric fields in individual $\mathrm{BaF}{\mathrm{e}}_{12}{\mathrm{O}}_{19}$ nanocrystals. Our results show that $\mathrm{BaF}{\mathrm{e}}_{12}{\mathrm{O}}_{19}$ is an improper ferroelectric, in contrast to the current paradigm that adheres to the absence of improper ferroelectricity. Moreover, the fine structure of the reconstructed Bragg electron density suggests that $\mathrm{BaF}{\mathrm{e}}_{12}{\mathrm{O}}_{19}$ may be able to harbor novel topological quantum states of matter and a pathway to transform information technologies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JJ完成签到,获得积分10
刚刚
就这发布了新的文献求助10
1秒前
科研通AI5应助Zm采纳,获得10
1秒前
2秒前
大模型应助liu采纳,获得10
2秒前
恭喜发布了新的文献求助10
3秒前
3秒前
Lucky发布了新的文献求助10
3秒前
春春完成签到,获得积分10
4秒前
脑壳疼丶完成签到,获得积分10
4秒前
Pulin发布了新的文献求助10
4秒前
RBE小陈完成签到,获得积分10
5秒前
6秒前
7秒前
bkagyin应助剪影改采纳,获得10
7秒前
慕青应助粗暴的万仇采纳,获得10
8秒前
十一完成签到,获得积分20
8秒前
tango发布了新的文献求助30
9秒前
犹豫的铸海完成签到,获得积分10
9秒前
Aroma完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
11秒前
lll发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
盐王爷完成签到,获得积分10
14秒前
Lze发布了新的文献求助10
14秒前
Aroma发布了新的文献求助10
15秒前
舒服的吗喽完成签到,获得积分10
15秒前
16秒前
剪影改发布了新的文献求助10
17秒前
高挑的哈密瓜完成签到,获得积分10
17秒前
奋斗酸奶完成签到,获得积分20
17秒前
17秒前
18秒前
我是老大应助Lucky采纳,获得10
18秒前
18秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475426
求助须知:如何正确求助?哪些是违规求助? 3067424
关于积分的说明 9103837
捐赠科研通 2758776
什么是DOI,文献DOI怎么找? 1513812
邀请新用户注册赠送积分活动 699810
科研通“疑难数据库(出版商)”最低求助积分说明 699160