数据库扫描
聚类分析
计算机科学
噪音(视频)
空间分析
航程(航空)
算法
数据挖掘
模式识别(心理学)
人工智能
CURE数据聚类算法
图像(数学)
相关聚类
遥感
地理
工程类
航空航天工程
标识
DOI:10.1016/j.datak.2006.01.013
摘要
This paper presents a new density-based clustering algorithm, ST-DBSCAN, which is based on DBSCAN. We propose three marginal extensions to DBSCAN related with the identification of (i) core objects, (ii) noise objects, and (iii) adjacent clusters. In contrast to the existing density-based clustering algorithms, our algorithm has the ability of discovering clusters according to non-spatial, spatial and temporal values of the objects. In this paper, we also present a spatial–temporal data warehouse system designed for storing and clustering a wide range of spatial–temporal data. We show an implementation of our algorithm by using this data warehouse and present the data mining results.
科研通智能强力驱动
Strongly Powered by AbleSci AI