Illumination compensation for facial feature point localization in a single 2D face image

人工智能 计算机视觉 影子(心理学) 计算机科学 面子(社会学概念) 亮度 特征(语言学) 面部识别系统 图像(数学) 模式识别(心理学) 地标 光学 哲学 社会学 物理 心理治疗师 语言学 社会科学 心理学
作者
Jizheng Yi,Xia Mao,Lijiang Chen,Alberto Rovetta
出处
期刊:Neurocomputing [Elsevier]
卷期号:173: 573-579 被引量:6
标识
DOI:10.1016/j.neucom.2015.07.092
摘要

Current researches have demonstrated that illumination variation on face images degrades the accuracy of facial identity and emotion recognition. To decrease the impact of illumination variation, researchers have proposed many creative methods of illumination compensation. However, these methods are limited in compensating for the shadow around the nose. On the basis of our previous researches, we now propose a novel approach which can effectively decrease the impact of illumination variation, especially the shadow around the nose. Firstly, we preprocessed the face image with uneven brightness using technologies of illuminant direction estimation and improved Retinex. Secondly, we turn the original face image into a binary image with only shadow region or non-shadow region using region growing technology. Thirdly, we calculate the difference between the intensity of the original input face image and the average intensity of the face images under the frontal illumination. Fourthly, for the face image preprocessed in the first step, we keep its non-shadow region. For the intensity difference, we extract its shadow region whose intensity is reduced by an adaptive value. Fifthly, we synthesize the non-shadow region and the shadow region in step four. Finally, we apply maximum filter to smooth the boundary between them. The proposed method is simple in computation and does not need any training steps or any knowledge of 3D models. The experimental results using extended Yale face database B show that our method achieves better illumination compensation comparing with the existing techniques, and provide more satisfactory experimental data for facial identity and emotion recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aurora发布了新的文献求助10
刚刚
刚刚
1秒前
852应助AudreyZ采纳,获得10
1秒前
小凯发布了新的文献求助10
1秒前
脑洞疼应助陈泽宇采纳,获得10
1秒前
1秒前
龅牙苏发布了新的文献求助10
2秒前
优美的小笨蛋完成签到,获得积分10
2秒前
Jasper应助现在刚好采纳,获得10
2秒前
2秒前
BluE.完成签到,获得积分10
2秒前
鲈鱼发布了新的文献求助10
3秒前
kevin发布了新的文献求助10
4秒前
一路生花发布了新的文献求助10
4秒前
4秒前
Indexxx发布了新的文献求助10
5秒前
wangheng发布了新的文献求助10
6秒前
6秒前
6秒前
蓝溺完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
7秒前
daoketuo发布了新的文献求助10
7秒前
yy完成签到,获得积分20
7秒前
bayes111完成签到,获得积分20
7秒前
骆十八完成签到,获得积分10
7秒前
davidwuran发布了新的文献求助10
7秒前
fun发布了新的文献求助30
9秒前
9秒前
10秒前
bayes111发布了新的文献求助10
10秒前
Orange应助adamwang采纳,获得10
10秒前
刚睡醒完成签到,获得积分20
10秒前
10秒前
小白鼠发布了新的文献求助10
10秒前
11秒前
SciGPT应助AAA采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609846
求助须知:如何正确求助?哪些是违规求助? 4694420
关于积分的说明 14882214
捐赠科研通 4720449
什么是DOI,文献DOI怎么找? 2544941
邀请新用户注册赠送积分活动 1509785
关于科研通互助平台的介绍 1473002