Illumination compensation for facial feature point localization in a single 2D face image

人工智能 计算机视觉 影子(心理学) 计算机科学 面子(社会学概念) 亮度 特征(语言学) 面部识别系统 图像(数学) 模式识别(心理学) 地标 光学 心理学 社会科学 语言学 哲学 社会学 物理 心理治疗师
作者
Jizheng Yi,Xia Mao,Lijiang Chen,Alberto Rovetta
出处
期刊:Neurocomputing [Elsevier]
卷期号:173: 573-579 被引量:6
标识
DOI:10.1016/j.neucom.2015.07.092
摘要

Current researches have demonstrated that illumination variation on face images degrades the accuracy of facial identity and emotion recognition. To decrease the impact of illumination variation, researchers have proposed many creative methods of illumination compensation. However, these methods are limited in compensating for the shadow around the nose. On the basis of our previous researches, we now propose a novel approach which can effectively decrease the impact of illumination variation, especially the shadow around the nose. Firstly, we preprocessed the face image with uneven brightness using technologies of illuminant direction estimation and improved Retinex. Secondly, we turn the original face image into a binary image with only shadow region or non-shadow region using region growing technology. Thirdly, we calculate the difference between the intensity of the original input face image and the average intensity of the face images under the frontal illumination. Fourthly, for the face image preprocessed in the first step, we keep its non-shadow region. For the intensity difference, we extract its shadow region whose intensity is reduced by an adaptive value. Fifthly, we synthesize the non-shadow region and the shadow region in step four. Finally, we apply maximum filter to smooth the boundary between them. The proposed method is simple in computation and does not need any training steps or any knowledge of 3D models. The experimental results using extended Yale face database B show that our method achieves better illumination compensation comparing with the existing techniques, and provide more satisfactory experimental data for facial identity and emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
1秒前
JHzazaza完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
Tiliar完成签到,获得积分10
2秒前
2秒前
NIKI发布了新的文献求助10
3秒前
Fascinate完成签到,获得积分10
4秒前
YL_娟头儿完成签到,获得积分10
4秒前
shanjianjie发布了新的文献求助20
4秒前
Yunlong发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
斯文败类应助OMR123采纳,获得10
6秒前
6秒前
活泼的路人完成签到 ,获得积分10
7秒前
7秒前
谷粱紫槐完成签到,获得积分10
7秒前
七七发布了新的文献求助10
7秒前
8秒前
yannnis完成签到,获得积分20
9秒前
9秒前
子车茗应助小艾采纳,获得30
9秒前
frap完成签到,获得积分10
10秒前
lilia发布了新的文献求助10
11秒前
叶子完成签到,获得积分10
11秒前
12秒前
大虫子发布了新的文献求助10
12秒前
无名老大应助陈修远采纳,获得30
13秒前
彭于晏应助吴子秋采纳,获得10
13秒前
乐乐应助繁荣的哲瀚采纳,获得10
14秒前
Lemon发布了新的文献求助10
14秒前
14秒前
15秒前
ANSWER发布了新的文献求助10
15秒前
在水一方应助郭郭郭采纳,获得10
16秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Refractive Index Metrology of Optical Polymers 400
Progress in the development of NiO/MgO solid solution catalysts: A review 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3442454
求助须知:如何正确求助?哪些是违规求助? 3038799
关于积分的说明 8974198
捐赠科研通 2727317
什么是DOI,文献DOI怎么找? 1495937
科研通“疑难数据库(出版商)”最低求助积分说明 691341
邀请新用户注册赠送积分活动 688566