Illumination compensation for facial feature point localization in a single 2D face image

人工智能 计算机视觉 影子(心理学) 计算机科学 面子(社会学概念) 亮度 特征(语言学) 面部识别系统 图像(数学) 模式识别(心理学) 地标 光学 心理学 社会科学 语言学 哲学 社会学 物理 心理治疗师
作者
Jizheng Yi,Xia Mao,Lijiang Chen,Alberto Rovetta
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:173: 573-579 被引量:6
标识
DOI:10.1016/j.neucom.2015.07.092
摘要

Current researches have demonstrated that illumination variation on face images degrades the accuracy of facial identity and emotion recognition. To decrease the impact of illumination variation, researchers have proposed many creative methods of illumination compensation. However, these methods are limited in compensating for the shadow around the nose. On the basis of our previous researches, we now propose a novel approach which can effectively decrease the impact of illumination variation, especially the shadow around the nose. Firstly, we preprocessed the face image with uneven brightness using technologies of illuminant direction estimation and improved Retinex. Secondly, we turn the original face image into a binary image with only shadow region or non-shadow region using region growing technology. Thirdly, we calculate the difference between the intensity of the original input face image and the average intensity of the face images under the frontal illumination. Fourthly, for the face image preprocessed in the first step, we keep its non-shadow region. For the intensity difference, we extract its shadow region whose intensity is reduced by an adaptive value. Fifthly, we synthesize the non-shadow region and the shadow region in step four. Finally, we apply maximum filter to smooth the boundary between them. The proposed method is simple in computation and does not need any training steps or any knowledge of 3D models. The experimental results using extended Yale face database B show that our method achieves better illumination compensation comparing with the existing techniques, and provide more satisfactory experimental data for facial identity and emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助一块巧克力采纳,获得10
1秒前
1秒前
courage完成签到,获得积分10
1秒前
Ava应助kdkfjaljk采纳,获得10
3秒前
7秒前
赘婿应助jjj采纳,获得10
9秒前
17871635733完成签到,获得积分10
9秒前
10秒前
zzzc发布了新的文献求助10
10秒前
11秒前
12秒前
所所应助Shacoooo采纳,获得10
12秒前
妙漉发布了新的文献求助10
12秒前
14秒前
噜啦噜啦发布了新的文献求助10
15秒前
Han发布了新的文献求助10
15秒前
suda完成签到,获得积分10
15秒前
18秒前
19秒前
JamesPei应助ljn0406采纳,获得10
20秒前
cgsu完成签到,获得积分10
20秒前
赘婿应助吕易巧采纳,获得10
21秒前
研友_X89o6n发布了新的文献求助30
22秒前
23秒前
星辰大海应助limeOrca采纳,获得10
23秒前
25秒前
cappuccino完成签到 ,获得积分10
25秒前
25秒前
KONGBAI完成签到,获得积分10
25秒前
刘洋完成签到,获得积分10
25秒前
27秒前
27秒前
烟花应助科研通管家采纳,获得30
27秒前
27秒前
27秒前
烟花应助科研通管家采纳,获得10
27秒前
冷静的方盒完成签到,获得积分10
27秒前
wanci应助科研通管家采纳,获得10
27秒前
千跃应助科研通管家采纳,获得10
27秒前
科目三应助科研通管家采纳,获得10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959455
求助须知:如何正确求助?哪些是违规求助? 3505634
关于积分的说明 11125092
捐赠科研通 3237449
什么是DOI,文献DOI怎么找? 1789148
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802858