神经科学
自然恢复
脊髓损伤
病变
脊髓
医学
多发性硬化
物理医学与康复
心理学
外科
精神科
作者
Grégoire Courtine,Bei Song,Roland R. Roy,Hui Zhong,Julia Herrmann,Yan Ao,Jingwei Qi,V. Reggie Edgerton,Michael V. Sofroniew
出处
期刊:Nature Medicine
[Springer Nature]
日期:2008-01-01
卷期号:14 (1): 69-74
被引量:645
摘要
Spinal cord injuries (SCIs) in humans and experimental animals are often associated with varying degrees of spontaneous functional recovery during the first months after injury. Such recovery is widely attributed to axons spared from injury that descend from the brain and bypass incomplete lesions, but its mechanisms are uncertain. To investigate the neural basis of spontaneous recovery, we used kinematic, physiological and anatomical analyses to evaluate mice with various combinations of spatially and temporally separated lateral hemisections with or without the excitotoxic ablation of intrinsic spinal cord neurons. We show that propriospinal relay connections that bypass one or more injury sites are able to mediate spontaneous functional recovery and supraspinal control of stepping, even when there has been essentially total and irreversible interruption of long descending supraspinal pathways in mice. Our findings show that pronounced functional recovery can occur after severe SCI without the maintenance or regeneration of direct projections from the brain past the lesion and can be mediated by the reorganization of descending and propriospinal connections. Targeting interventions toward augmenting the remodeling of relay connections may provide new therapeutic strategies to bypass lesions and restore function after SCI and in other conditions such as stroke and multiple sclerosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI