数字图像相关
数字图像
计算机视觉
人工智能
稳健性(进化)
计算机科学
亮度
可靠性(半导体)
数字图像处理
图像(数学)
图像处理
数学
光学
基因
量子力学
物理
生物化学
功率(物理)
化学
出处
期刊:Strain
[Wiley]
日期:2005-10-14
卷期号:41 (4): 167-175
被引量:260
标识
DOI:10.1111/j.1475-1305.2005.00227.x
摘要
Abstract: The performance of four digital image correlation criteria widely used in strain mapping applications has been critically examined using three sets of digital images with various whole‐field deformation characteristics. The deformed images in these image sets are digitally modified to simulate the less‐than‐ideal image acquisition conditions in an actual experiment, such as variable brightness, contrast, uneven local lighting and blurring. The relative robustness, computational cost and reliability of each criterion are assessed for precision strain mapping applications. Recommendations are given for selecting a proper image correlation criterion to efficiently extract reliable deformation data from a given set of digital images.
科研通智能强力驱动
Strongly Powered by AbleSci AI