亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of prostate carcinoma stage by quantitative biopsy pathology

医学 前列腺切除术 前列腺癌 前列腺 阶段(地层学) 活检 淋巴结切除术 逻辑回归 放射科 病理 淋巴结 肿瘤科 内科学 泌尿科 癌症 古生物学 生物
作者
Robert W. Veltri,Michael Craig Miller,Alan W. Partin,Edward C. Poole,Gerard J. O’Dowd
出处
期刊:Cancer [Wiley]
卷期号:91 (12): 2322-2328 被引量:31
标识
DOI:10.1002/1097-0142(20010615)91:12<2322::aid-cncr1264>3.0.co;2-h
摘要

BACKGROUND Considerable evidence has shown that the use of computational algorithms to combine pretreatment clinical and pathology results can enhance predictions of patient outcome. The aim of this study was to prove that the application of such methods to predict patient-specific likelihoods of organ-confined (OC) prostate carcinoma (PCA) may be helpful to patients and physicians when they are choosing an optimal treatment for carcinoma of the prostate. METHODS The authors used clinical and quantitative pathology results from the biopsy specimens of 817 PCA patients who had been evaluated at a large national pathology reference laboratory. The pathology parameters that were measured included the number of positive cores, Gleason grades and score, percentage of tumor involvement, and the tumor location. The pathologic stage of these cases, as determined by results from radical prostatectomy, lymphadenectomy, or bone scan, categorized the PCA as either OC, non-OC due to capsular penetration only (NOC-CP) or advanced disease with metastasis (NOC-Mets), i.e., seminal vesicle and/or lymph-node positive or bone-scan positive. There were a total of 481 OC cases, 185 NOC-CP cases, and 151 NOC-Mets cases. Patient-specific prediction models were trained by ordinal logistic regression (OLOGIT) and genetically engineered neural networks (GENNs), and the resulting trained models were validated by biopsy information from an independent set of 116 PCA patients. RESULTS When the authors applied a cutoff of ≥ 35% for the n = 817 training set of OC, NOC-CP, and NOC-Mets predictive probabilities, the OLOGIT model predicted OC PCA with an accuracy of 91%, whereas the GENN model predicted the same with an accuracy of 95%. When the authors employed the n = 116 validation set (76 OCs, 31 NOC-CPs, and 9 NOC-Mets), the OLOGIT and GENN models correctly identified OC PCA with 91% and 97% accuracy, respectively. CONCLUSIONS The value of combining patient pretreatment diagnostic pathology parameters to make predictions concerning the postoperative extent of pathology was illustrated clearly in this study. This finding further confirms the need to pursue such approaches for PCA disease management in the future, especially with the increasing prevalence of clinical T1c (American Joint Committee on Cancer, 1977) disease. Cancer 2001;91:2322–8. © 2001 American Cancer Society.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾可仁完成签到,获得积分10
4秒前
菲菲鱼丸完成签到,获得积分10
20秒前
张志伟完成签到 ,获得积分10
22秒前
23秒前
汉堡包应助哈哈哈哈采纳,获得10
28秒前
善学以致用应助汤万天采纳,获得10
57秒前
1分钟前
1分钟前
汤万天完成签到,获得积分10
1分钟前
1分钟前
汤万天发布了新的文献求助10
1分钟前
1分钟前
Orange应助豆乳米麻薯采纳,获得10
1分钟前
zzx完成签到 ,获得积分10
1分钟前
sdkabdrxt完成签到,获得积分10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
1分钟前
Raven发布了新的文献求助10
1分钟前
2分钟前
Raven完成签到,获得积分20
2分钟前
哈哈哈哈发布了新的文献求助10
2分钟前
2分钟前
赘婿应助哈哈哈哈采纳,获得20
2分钟前
2分钟前
log完成签到 ,获得积分10
2分钟前
打打应助哈哈哈哈呵呵采纳,获得10
2分钟前
caitlin完成签到 ,获得积分10
2分钟前
轮胎配方完成签到,获得积分10
2分钟前
老鸭梨发布了新的文献求助10
2分钟前
leyellows完成签到 ,获得积分10
2分钟前
哈哈哈哈完成签到 ,获得积分10
2分钟前
coolru完成签到,获得积分10
2分钟前
3分钟前
3分钟前
狂野傲南发布了新的文献求助10
3分钟前
YY发布了新的文献求助10
3分钟前
SciGPT应助狂野傲南采纳,获得10
3分钟前
cach完成签到,获得积分10
3分钟前
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162300
求助须知:如何正确求助?哪些是违规求助? 2813318
关于积分的说明 7899633
捐赠科研通 2472677
什么是DOI,文献DOI怎么找? 1316507
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142