莨菪碱
托烷
转氨作用
颠茄
生物
生物合成
生物化学
苯丙氨酸
立体化学
茄科
氨基酸
化学
酶
植物
基因
神经科学
作者
Matthew A. Bedewitz,Elsa Góngora-Castillo,Joseph B. Uebler,Eliana Gonzales‐Vigil,Krystle Wiegert‐Rininger,Kevin L. Childs,John Hamilton,Brieanne Vaillancourt,Yunsoo Yeo,Joseph Chappell,Dean DellaPenna,A. Daniel Jones,C. Robin Buell,Cornelius S. Barry
出处
期刊:The Plant Cell
[Oxford University Press]
日期:2014-09-01
卷期号:26 (9): 3745-3762
被引量:62
标识
DOI:10.1105/tpc.114.130534
摘要
The tropane alkaloids, hyoscyamine and scopolamine, are medicinal compounds that are the active components of several therapeutics. Hyoscyamine and scopolamine are synthesized in the roots of specific genera of the Solanaceae in a multistep pathway that is only partially elucidated. To facilitate greater understanding of tropane alkaloid biosynthesis, a de novo transcriptome assembly was developed for Deadly Nightshade (Atropa belladonna). Littorine is a key intermediate in hyoscyamine and scopolamine biosynthesis that is produced by the condensation of tropine and phenyllactic acid. Phenyllactic acid is derived from phenylalanine via its transamination to phenylpyruvate, and mining of the transcriptome identified a phylogenetically distinct aromatic amino acid aminotransferase (ArAT), designated Ab-ArAT4, that is coexpressed with known tropane alkaloid biosynthesis genes in the roots of A. belladonna. Silencing of Ab-ArAT4 disrupted synthesis of hyoscyamine and scopolamine through reduction of phenyllactic acid levels. Recombinant Ab-ArAT4 preferentially catalyzes the first step in phenyllactic acid synthesis, the transamination of phenylalanine to phenylpyruvate. However, rather than utilizing the typical keto-acid cosubstrates, 2-oxoglutarate, pyruvate, and oxaloacetate, Ab-ArAT4 possesses strong substrate preference and highest activity with the aromatic keto-acid, 4-hydroxyphenylpyruvate. Thus, Ab-ArAT4 operates at the interface between primary and specialized metabolism, contributing to both tropane alkaloid biosynthesis and the direct conversion of phenylalanine to tyrosine.
科研通智能强力驱动
Strongly Powered by AbleSci AI