Summarizing historical information on controls in clinical trials

样本量测定 临床试验 统计 样品(材料) 随机对照试验 计算机科学 计量经济学 医学 数学 内科学 色谱法 化学
作者
Beat Neuenschwander,Gorana Capkun-Niggli,Michael Branson,David J. Spiegelhalter
出处
期刊:Clinical Trials [SAGE]
卷期号:7 (1): 5-18 被引量:294
标识
DOI:10.1177/1740774509356002
摘要

Historical information is always relevant when designing clinical trials, but it might also be incorporated in the analysis. It seems appropriate to exploit past information on comparable control groups.Phase IV and proof-of-concept trials are used to discuss aspects of summarizing historical control data as prior information in a new trial. The importance of a fair assessment of the similarity of control parameters is emphasized.The methodology is meta-analytic-predictive. Heterogeneity of control parameters is expressed via the between-trial variation, which is the key parameter determining the prior effective sample size and its upper bound (prior maximum sample size).For a Phase IV trial (930 control patients in 11 historical trials) between-trial heterogeneity was fairly small, resulting in a prior effective sample size of approximately 90 patients. For a proof-of-concept trial (363 patients in four historical trials) heterogeneity was moderate to substantial, resulting in a prior effective sample size of approximately 20. For another proof-of-concept trial (14 patients in one historical trial), assuming substantial heterogeneity implied a prior effective sample size of 7. The prior effective sample size can only be large if the amount of historical data is large and between-trial heterogeneity is small. The prior effective sample size is bounded by the prior maximum sample size (ratio of within- to between-trial variance), irrespective of the amount of historical data.The meta-analytic-predictive approach assumes exchangeability of control parameters across trials. Due to the difficulty to quantify between-trial variability, sensitivity of conclusions regarding assumptions and type of inference should be assessed.The use of historical control information is a valuable option and may lead to more efficient clinical trials. The proposed approach is attractive for nonconfirmatory trials, but under certain circumstances extensions to the confirmatory setting could be envisaged as well.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
招财不肥完成签到,获得积分10
1秒前
1秒前
77完成签到,获得积分10
2秒前
NexusExplorer应助顾阿秀采纳,获得10
2秒前
2秒前
科研通AI5应助二二二采纳,获得10
3秒前
terrell完成签到,获得积分10
3秒前
David完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助Denmark采纳,获得10
4秒前
4秒前
望望旺仔牛奶完成签到,获得积分10
4秒前
香蕉觅云应助luoshi采纳,获得10
5秒前
Zn应助gnr2000采纳,获得10
5秒前
二小完成签到,获得积分20
5秒前
拼搏思卉完成签到,获得积分10
5秒前
内向音响发布了新的文献求助10
5秒前
上官若男应助曼尼采纳,获得10
6秒前
飞羽发布了新的文献求助10
6秒前
科研通AI2S应助song99采纳,获得10
6秒前
momi完成签到 ,获得积分10
6秒前
哈哈哈呢完成签到 ,获得积分20
6秒前
LiShin发布了新的文献求助10
6秒前
phylicia发布了新的文献求助10
7秒前
萝卜完成签到,获得积分10
7秒前
7秒前
sjj完成签到,获得积分10
8秒前
只道寻常发布了新的文献求助10
8秒前
灵巧坤完成签到,获得积分20
9秒前
澹台灭明完成签到,获得积分10
9秒前
含蓄的鹤发布了新的文献求助10
9秒前
K. G.完成签到,获得积分0
9秒前
张云雷的大闸蟹完成签到,获得积分20
9秒前
9秒前
10秒前
11秒前
化学狗完成签到,获得积分10
11秒前
yud完成签到 ,获得积分10
11秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762