Curcumin, with its recent success as an anti-tumor agent, has been attracting researchers from wide ranging fields of physics, chemistry, biology and medicine. The chemical structure of curcumin has two o-methoxy phenols attached symmetrically through α,β-unsaturated β-diketone linker, which also induces keto–enol tautomerism. Due to this, curcumin exhibits many interesting photophysical and photochemical properties. The absorption maximum of curcumin is ∼408–430 nm in most of the organic solvents, while the emission maximum is very sensitive to the surrounding solvent medium (460–560 nm) and the Stokes’ shift varied from 2000 to 6000 cm−1. The fluorescence quantum yield in most of the solvents is low and reduced significantly in presence of water. The fluorescence lifetime is short (<1 ns) and displayed multi-exponential decay profile. The singlet excited states of curcumin decay by non-radiative processes contributed mainly by intra- and intermolecular proton transfer with very low intersystem crossing efficiency. Polarity, π-bonding nature, hydrogen bond donating and accepting properties of the solvent influence the excited state photophysics of curcumin in a complex manner. The triplet excited states of curcumin absorb at 720 nm and react with oxygen to produce singlet molecular oxygen. The photodegradation of curcumin produces smaller phenols and the photobiological activity of curcumin is due to the generation of reactive oxygen species. Being lipophilic in nature, the water solubility of curcumin could be enhanced upon the addition of surfactants, polymers, cyclodextrins, lipids and proteins. Changes in the absorption and fluorescence properties of curcumin have been found useful to follow its interaction and site of binding in these systems. Curcumin fluorescence could be employed to follow the unfolding pattern and structural changes in proteins. The intracellular curcumin showed more fluorescence in tumor cells than in normal cells and fluorescence spectroscopy could be used to monitor its preferential localization in the membrane of tumor cells. This review, presents the current status of research on the photophysical, photochemical and photobiological processes of curcumin in homogeneous solutions, bio-mimetics and living cells. Based on these studies, the possibility of developing curcumin, as a bimolecular sensitive fluorescent probe is also discussed.