Morphological Changes in Dendritic Spines Associated with Long-Term Synaptic Plasticity

神经科学 树突棘 长时程增强 突触可塑性 生物 脊柱(分子生物学) 树枝状丝状体 海马体 海马结构 细胞生物学 生物化学 受体
作者
Rafael Yuste,Tobias Bonhoeffer
出处
期刊:Annual Review of Neuroscience [Annual Reviews]
卷期号:24 (1): 1071-1089 被引量:1177
标识
DOI:10.1146/annurev.neuro.24.1.1071
摘要

Dendritic spines are morphological specializations that receive synaptic inputs and compartmentalize calcium. In spite of a long history of research, the specific function of spines is still not well understood. Here we review the current status of the relation between morphological changes in spines and synaptic plasticity. Since Cajal and Tanzi proposed that changes in the structure of the brain might occur as a consequence of experience, the search for the morphological correlates of learning has constituted one of the central questions in neuroscience. Although there are scores of studies that encompass this wide field in many species, in this review we focus on experimental work that has analyzed the morphological consequences of hippocampal long-term potentiation (LTP) in rodents. Over the past two decades many studies have demonstrated changes in the morphology of spines after LTP, such as enlargements of the spine head and shortenings of the spine neck. Biophysically, these changes translate into an increase in the synaptic current injected at the spine, as well as shortening of the time constant for calcium compartmentalization. In addition, recent online studies using time-lapse imaging have reported increased spinogenesis. The currently available data show a strong correlation between synaptic plasticity and morphological changes in spines, although at the same time, there is no evidence that these morphological changes are necessary or sufficient for the induction or maintenance of LTP. Still, they highlight once more how form and function go hand in hand in the central nervous system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一叶飘红完成签到,获得积分10
2秒前
2秒前
顺利毕业发布了新的文献求助50
2秒前
3秒前
慢慢完成签到,获得积分10
3秒前
Naonaoo完成签到,获得积分10
4秒前
zhuz发布了新的文献求助10
5秒前
科研通AI2S应助小牛牛采纳,获得10
6秒前
飞龙爵士完成签到,获得积分10
6秒前
wer完成签到 ,获得积分10
6秒前
斯文傲芙完成签到,获得积分10
6秒前
蔡徐坤完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
传奇3应助一粟采纳,获得10
7秒前
浮雨微清完成签到,获得积分10
7秒前
8秒前
蓝桉发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助yxy999采纳,获得10
9秒前
9秒前
斯文傲芙发布了新的文献求助10
9秒前
超级大饼完成签到,获得积分10
9秒前
9秒前
Orange应助多肉葡萄采纳,获得10
9秒前
努力搞科研完成签到,获得积分10
10秒前
游标卡尺完成签到,获得积分20
11秒前
素言完成签到 ,获得积分10
11秒前
Max发布了新的文献求助10
12秒前
天天快乐应助uwasa采纳,获得10
13秒前
完美橘子发布了新的文献求助10
13秒前
王往往完成签到 ,获得积分20
13秒前
14秒前
huo应助陈徐钖采纳,获得10
14秒前
85搏一博应助星中一点光采纳,获得10
14秒前
寒冷依秋发布了新的文献求助10
14秒前
14秒前
Carpe完成签到,获得积分10
15秒前
游标卡尺发布了新的文献求助10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309005
求助须知:如何正确求助?哪些是违规求助? 2942374
关于积分的说明 8508619
捐赠科研通 2617432
什么是DOI,文献DOI怎么找? 1430073
科研通“疑难数据库(出版商)”最低求助积分说明 664018
邀请新用户注册赠送积分活动 649234