Design of vanadium oxide structures with controllable electrical properties for energy applications

材料科学 储能 氧化钒 电势能 能量转换 超级电容器 纳米技术 氧化物 累加器(密码学) 能量(信号处理) 计算机科学 电化学 化学 冶金 电极 热力学 统计 物理 物理化学 功率(物理) 数学 算法
作者
Changzheng Wu,Feng Feng,Yi Xie
出处
期刊:Chemical Society Reviews [The Royal Society of Chemistry]
卷期号:42 (12): 5157-5157 被引量:434
标识
DOI:10.1039/c3cs35508j
摘要

The electrical properties of inorganic materials has been a long-standing pursued research topic, and successfully controlling the electrical property of an inorganic material has attracted significant attention for a wide range of energy-related applications, covering energy storage, energy conversion and energy utilization. During the few past decades, vanadium oxides have been studied to gain a clear picture of how microstructural characteristics generating the e–e correlations influence the electronic structure of a material, through which the charge concentration, electrical conductivity as well as the metal–insulator transition (MIT), etc., can be precisely controlled, giving promising signs for constructing energy-related devices. In this review, we present an extensive review of the engineering of the microstructures of vanadium oxides with control of their electrical properties, and with attempts to rationally construct energy-related devices, such as aqueous lithium ion batteries, supercapacitors for energy storage, and thermoelectric generators for energy conversion. Furthermore, the MIT performance of vanadium oxides has also seen tremendous advantages for the applications of "smart windows" and magnetocaloric refrigerators for energy utilization. Collectively, progresses to date suggest that in vanadium oxide systems, the electrical properties, including electrical conductivity, carrier concentrations, and the MIT performance, were all strongly dependent on the microstructural characteristics at the atomic scale, which have presented extensive promising energy applications covering energy storage, energy conversion and energy utilization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zero完成签到 ,获得积分10
2秒前
科研通AI5应助文艺的听白采纳,获得10
4秒前
ye关闭了ye文献求助
5秒前
斯文败类应助一二三采纳,获得10
6秒前
wsh完成签到,获得积分10
9秒前
迅速冥茗完成签到,获得积分10
13秒前
大鸣王潮完成签到 ,获得积分10
14秒前
坦率的跳跳糖完成签到 ,获得积分10
14秒前
Dragon完成签到,获得积分20
14秒前
15秒前
成就发箍发布了新的文献求助10
15秒前
笑靥完成签到,获得积分10
16秒前
汉堡包应助慈祥的绮兰采纳,获得10
16秒前
ye关闭了ye文献求助
17秒前
18秒前
XU完成签到,获得积分10
18秒前
青仔仔完成签到,获得积分10
19秒前
21秒前
23秒前
大红参发布了新的文献求助10
24秒前
24秒前
Amazing_Grace发布了新的文献求助10
26秒前
科研通AI5应助早岁采纳,获得10
26秒前
26秒前
27秒前
28秒前
脑洞疼应助浩浩采纳,获得10
29秒前
尊敬的小土豆完成签到,获得积分10
30秒前
乐乐应助小米采纳,获得10
30秒前
bb发布了新的文献求助10
30秒前
30秒前
苏瑾发布了新的文献求助10
31秒前
星辰大海应助a焦采纳,获得10
31秒前
AlinaLee应助本色小杆子采纳,获得10
31秒前
32秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
33秒前
小马甲应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3573780
求助须知:如何正确求助?哪些是违规求助? 3143615
关于积分的说明 9453054
捐赠科研通 2845188
什么是DOI,文献DOI怎么找? 1564067
邀请新用户注册赠送积分活动 732085
科研通“疑难数据库(出版商)”最低求助积分说明 718851