Assessments of Drought Impacts on Vegetation in China with the Optimal Time Scales of the Climatic Drought Index

归一化差异植被指数 环境科学 蒸散量 植被(病理学) 灌木丛 降水 草原 生长季节 自然地理学 增强植被指数 干旱 气候变化 气候学 生态学 生态系统 地理 植被指数 生物 气象学 地质学 病理 医学
作者
Z. Li,Tao Zhou,Xiang Zhao,Kaicheng Huang,Shan Gao,Hao Wu,Hui Luo
出处
期刊:International Journal of Environmental Research and Public Health [Multidisciplinary Digital Publishing Institute]
卷期号:12 (7): 7615-7634 被引量:43
标识
DOI:10.3390/ijerph120707615
摘要

Drought is expected to increase in frequency and severity due to global warming, and its impacts on vegetation are typically extensively evaluated with climatic drought indices, such as multi-scalar Standardized Precipitation Evapotranspiration Index (SPEI). We analyzed the covariation between the SPEIs of various time scales and the anomalies of the normalized difference vegetation index (NDVI), from which the vegetation type-related optimal time scales were retrieved. The results indicated that the optimal time scales of needle-leaved forest, broadleaf forest and shrubland were between 10 and 12 months, which were considerably longer than the grassland, meadow and cultivated vegetation ones (2 to 4 months). When the optimal vegetation type-related time scales were used, the SPEI could better reflect the vegetation’s responses to water conditions, with the correlation coefficients between SPEIs and NDVI anomalies increased by 5.88% to 28.4%. We investigated the spatio-temporal characteristics of drought and quantified the different responses of vegetation growth to drought during the growing season (April–October). The results revealed that the frequency of drought has increased in the 21st century with the drying trend occurring in most of China. These results are useful for ecological assessments and adapting management steps to mitigate the impact of drought on vegetation. They are helpful to employ water resources more efficiently and reduce potential damage to human health caused by water shortages.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hxq完成签到,获得积分10
1秒前
木吉他123发布了新的文献求助30
2秒前
星辰大海应助keyakey采纳,获得10
2秒前
海洋之心发布了新的文献求助10
3秒前
3秒前
4秒前
科研通AI5应助啊哦采纳,获得10
4秒前
6秒前
bewh应助火星上若冰采纳,获得20
8秒前
落后画笔完成签到,获得积分10
11秒前
淡定发布了新的文献求助10
11秒前
碎米花完成签到 ,获得积分10
13秒前
SYLH应助神勇的砖头采纳,获得10
15秒前
李健应助科研通管家采纳,获得10
18秒前
Owen应助科研通管家采纳,获得10
18秒前
Xiaoyuan应助科研通管家采纳,获得10
18秒前
珂珂完成签到 ,获得积分10
18秒前
Xiaoyuan应助科研通管家采纳,获得10
18秒前
19秒前
19秒前
20秒前
20秒前
淡定完成签到,获得积分20
21秒前
23秒前
啊哦发布了新的文献求助10
23秒前
24秒前
crystal01162发布了新的文献求助10
24秒前
xx发布了新的文献求助10
27秒前
27秒前
DearWhite发布了新的文献求助10
27秒前
28秒前
28秒前
酷波er应助William采纳,获得10
31秒前
七七发布了新的文献求助10
31秒前
英姑应助怕孤独的绮南采纳,获得10
32秒前
123应助神勇的砖头采纳,获得10
32秒前
星辰大海应助淡定采纳,获得10
33秒前
Tingtingzhang发布了新的文献求助10
33秒前
33秒前
xxxHolic41完成签到,获得积分10
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747431
求助须知:如何正确求助?哪些是违规求助? 3290072
关于积分的说明 10068060
捐赠科研通 3006185
什么是DOI,文献DOI怎么找? 1650813
邀请新用户注册赠送积分活动 786123
科研通“疑难数据库(出版商)”最低求助积分说明 751463