紧致有限差分
数学
三对角矩阵
伯格斯方程
方案(数学)
有限差分系数
有限差分法
有限差分
准确度顺序
应用数学
订单(交换)
广义相对论的精确解
数学分析
空格(标点符号)
数值分析
偏微分方程
有限元法
数值稳定性
计算机科学
混合有限元法
财务
热力学
经济
特征向量
量子力学
物理
操作系统
作者
Murat Sarı,Gürhan Gürarslan
标识
DOI:10.1016/j.amc.2008.12.012
摘要
A numerical solution of the one-dimensional Burgers' equation is obtained using a sixth-order compact finite difference method. To achieve this, a tridiagonal sixth-order compact finite difference scheme in space and a low-storage third-order total variation diminishing Runge–Kutta scheme in time have been combined. The scheme is implemented to solve two test problems with known exact solutions. Comparisons of the computed results with exact solutions showed that the method is capable of achieving high accuracy and efficiency with minimal computational effort. The present results are also seen to be more accurate than some available results given in the literature.
科研通智能强力驱动
Strongly Powered by AbleSci AI