Predicting protein structures with a multiplayer online game

空格(标点符号) 计算机科学 组合博弈论 简单(哲学) 人工智能 理论计算机科学 人机交互 数据科学 机器学习 博弈论 序贯博弈 数学 数理经济学 哲学 操作系统 认识论
作者
Seth Cooper,Firas Khatib,Adrien Treuille,János Barbero,Jeehyung Lee,Michael Beenen,Andrew Leaver‐Fay,David Baker,Zoran Popović,Foldit Players
出处
期刊:Nature [Springer Nature]
卷期号:466 (7307): 756-760 被引量:1325
标识
DOI:10.1038/nature09304
摘要

People exert large amounts of problem-solving effort playing computer games. Simple image- and text-recognition tasks have been successfully 'crowd-sourced' through games, but it is not clear if more complex scientific problems can be solved with human-directed computing. Protein structure prediction is one such problem: locating the biologically relevant native conformation of a protein is a formidable computational challenge given the very large size of the search space. Here we describe Foldit, a multiplayer online game that engages non-scientists in solving hard prediction problems. Foldit players interact with protein structures using direct manipulation tools and user-friendly versions of algorithms from the Rosetta structure prediction methodology, while they compete and collaborate to optimize the computed energy. We show that top-ranked Foldit players excel at solving challenging structure refinement problems in which substantial backbone rearrangements are necessary to achieve the burial of hydrophobic residues. Players working collaboratively develop a rich assortment of new strategies and algorithms; unlike computational approaches, they explore not only the conformational space but also the space of possible search strategies. The integration of human visual problem-solving and strategy development capabilities with traditional computational algorithms through interactive multiplayer games is a powerful new approach to solving computationally-limited scientific problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lee完成签到,获得积分10
刚刚
科研通AI2S应助古药采纳,获得10
刚刚
刚刚
小罗在无锡完成签到,获得积分10
1秒前
Akim应助科研通管家采纳,获得30
1秒前
丰知然应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
丰知然应助科研通管家采纳,获得10
1秒前
dwls应助科研通管家采纳,获得10
1秒前
南风应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
稳重绿蕊发布了新的文献求助10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
丰知然应助科研通管家采纳,获得10
2秒前
丰知然应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得50
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
灵主发布了新的文献求助10
3秒前
3秒前
4秒前
酷炫邑发布了新的文献求助10
4秒前
wang1234发布了新的文献求助10
5秒前
王明磊完成签到 ,获得积分10
7秒前
asd发布了新的文献求助10
7秒前
研友_n0kW5L发布了新的文献求助10
8秒前
honeyman完成签到,获得积分10
8秒前
JHJ发布了新的文献求助10
9秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455021
求助须知:如何正确求助?哪些是违规求助? 3050304
关于积分的说明 9020908
捐赠科研通 2738923
什么是DOI,文献DOI怎么找? 1502343
科研通“疑难数据库(出版商)”最低求助积分说明 694500
邀请新用户注册赠送积分活动 693191