Histidine-metal interactions are utilized in many biological materials as reinforcing crosslinks, and in particular, are believed to contribute as reversible crosslinks to the intrinsic self-recovery behavior of mussel byssal threads. In this contribution, two new histidine-based monomers were synthesized and further copolymerized with butyl methacrylate (BMA) and lauryl methacrylate (LMA) applying the reversible addition–fragmentation chain transfer (RAFT) polymerization technique. Crosslinking with zinc ions resulted in supramolecular metallopolymer networks exhibiting a self-healing behavior that was tunable depending on the specific zinc salt used. The presented results provide a class of new polymeric species with different self-healing capacities.