MEASUREMENT AND ESTIMATION OF MUSCLE CONTRACTION STRENGTH USING MECHANOMYOGRAPHY BASED ON ARTIFICIAL NEURAL NETWORK ALGORITHM

等长运动 均方根 收缩(语法) 振幅 数学 均方误差 肌肉收缩 算法 生物医学工程 物理 统计 解剖 医学 物理疗法 量子力学 内科学
作者
Kin Fong Lei,Shih-Chung Cheng,Ming‐Yih Lee,Wen‐Yen Lin
出处
期刊:Biomedical Engineering: Applications, Basis and Communications [National Taiwan University]
卷期号:25 (02): 1350020-1350020 被引量:11
标识
DOI:10.4015/s1016237213500208
摘要

Muscle contraction strength estimation using mechanomyographic (MMG) signal is typically calculated by the root mean square (RMS) amplitude. Raw MMG signal is processed by rectification, low-pass filtering, and mapping. In this work, beside RMS amplitude, another significant parameter of MMG signal, i.e. frequency variance (VAR), is introduced and used for constructing an algorithm for estimating the muscle contraction strength. Seven participants produced isometric contractions about the elbow while MMG signal and generated torque (resultant of muscle contraction strength) of biceps brachii were recorded. We found that MMG RMS increased monotonously and VAR decreased under incremental voluntary contractions. Based on these results, a two-layer neural network was utilized for the model of estimating the muscle contraction strength from MMG RMS and VAR. Experimental evaluation was performed under constant posture and sinusoidal contractions at 0.5 Hz, 0.25 Hz, 0.125 Hz, and random frequency. The results of the proposed algorithm and MMG RMS linear mapping were also compared. The proposed algorithm has better accuracy than linear mapping for all contraction frequencies. The mean absolute error decreased 6% for the 0.5Hz contraction, 43% for 0.25 Hz contraction, 52% for 0.125 Hz contraction, and 30% for random frequency contraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助科研通管家采纳,获得10
1秒前
tuanheqi应助科研通管家采纳,获得150
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
Battery应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得30
3秒前
浮游应助科研通管家采纳,获得10
3秒前
rylynn完成签到,获得积分10
3秒前
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
李涵发布了新的文献求助10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
Su发布了新的文献求助10
3秒前
Owen应助江睿曦采纳,获得10
4秒前
5秒前
凯凯发布了新的文献求助10
5秒前
6秒前
6秒前
小马甲应助亦玉采纳,获得10
6秒前
赘婿应助xavier采纳,获得10
7秒前
wjw完成签到,获得积分10
7秒前
我很忙完成签到,获得积分10
7秒前
8秒前
8秒前
icreat发布了新的文献求助10
9秒前
研友_VZG7GZ应助LL采纳,获得10
10秒前
10秒前
10秒前
17完成签到,获得积分10
11秒前
冷酷愚志完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474