等长运动
均方根
收缩(语法)
振幅
数学
均方误差
肌肉收缩
算法
生物医学工程
物理
统计
解剖
医学
物理疗法
量子力学
内科学
作者
Kin Fong Lei,Shih-Chung Cheng,Ming‐Yih Lee,Wen‐Yen Lin
标识
DOI:10.4015/s1016237213500208
摘要
Muscle contraction strength estimation using mechanomyographic (MMG) signal is typically calculated by the root mean square (RMS) amplitude. Raw MMG signal is processed by rectification, low-pass filtering, and mapping. In this work, beside RMS amplitude, another significant parameter of MMG signal, i.e. frequency variance (VAR), is introduced and used for constructing an algorithm for estimating the muscle contraction strength. Seven participants produced isometric contractions about the elbow while MMG signal and generated torque (resultant of muscle contraction strength) of biceps brachii were recorded. We found that MMG RMS increased monotonously and VAR decreased under incremental voluntary contractions. Based on these results, a two-layer neural network was utilized for the model of estimating the muscle contraction strength from MMG RMS and VAR. Experimental evaluation was performed under constant posture and sinusoidal contractions at 0.5 Hz, 0.25 Hz, 0.125 Hz, and random frequency. The results of the proposed algorithm and MMG RMS linear mapping were also compared. The proposed algorithm has better accuracy than linear mapping for all contraction frequencies. The mean absolute error decreased 6% for the 0.5Hz contraction, 43% for 0.25 Hz contraction, 52% for 0.125 Hz contraction, and 30% for random frequency contraction.
科研通智能强力驱动
Strongly Powered by AbleSci AI