Charge transport modeling in insulating polymers: from molecular to macroscopic scale

电介质 材料科学 比例(比率) 工作(物理) 电荷(物理) 联轴节(管道) 半导体 工程物理 纳米技术 领域(数学) 空间电荷 统计物理学 计算机科学 物理 机械工程 工程类 电子 纯数学 数学 量子力学
作者
G. Teyssèdre,C. Laurent
出处
期刊:IEEE Transactions on Dielectrics and Electrical Insulation [Institute of Electrical and Electronics Engineers]
卷期号:12 (5): 857-875 被引量:429
标识
DOI:10.1109/tdei.2005.1522182
摘要

More than fifty years after the publication of the early work on conduction and dielectric breakdown of solids, we are still unable to describe quantitatively the electrical response of these materials. During this period of time, concepts derived from semiconductor physics have been transposed to the case of insulating solids, and among them, to polymers. Alternative descriptions have been proposed as well. In spite of this, there is still no agreement on how to describe charge transport and there is still some controversy as regards the applicability of semiconductors physics to the case of disordered insulating materials and in particular to polymers used in electrical engineering applications. The last twenty years have been marked by the publication of excellent review papers summarizing the physical concepts available to describe charge transport. Enormous steps forward have been achieved as regards computing facilities and our ability to spatially map the space charge, quantitatively, inside dielectric materials. We consider these two factors as fundamental in providing possibilities for developing sound models of charge transport, by using the basis of fundamental knowledge that has been accumulated in the previous years, and by coupling up-to-date techniques in experiments and in simulation. In this paper, which is not a review of either the published work on modeling or of new concepts in dielectric physics, we emphasize recent progress in the field of atomistic and macroscopic modeling and we discuss challenges based on such approaches that, we think, constitute a direction for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
nacheol应助王一刀采纳,获得10
2秒前
十一玮完成签到,获得积分10
3秒前
叮叮爱吃糖完成签到,获得积分10
3秒前
zygclwl完成签到,获得积分10
3秒前
Anonymous发布了新的文献求助10
3秒前
小小完成签到,获得积分10
4秒前
4秒前
大个应助Sunjz采纳,获得10
4秒前
大个应助zhuhan采纳,获得10
4秒前
vvSirius完成签到,获得积分10
4秒前
宫冷雁完成签到,获得积分10
5秒前
忘带耳机发布了新的文献求助10
5秒前
紫罗兰花海完成签到 ,获得积分10
5秒前
apckkk完成签到 ,获得积分10
6秒前
7秒前
方语蕊完成签到 ,获得积分10
7秒前
开朗万天完成签到 ,获得积分10
7秒前
研友_ZGR70n完成签到,获得积分10
7秒前
无私迎海完成签到,获得积分10
8秒前
比目鱼发布了新的文献求助10
9秒前
9秒前
向日葵发布了新的文献求助10
9秒前
10秒前
fyjlfy发布了新的文献求助10
10秒前
10秒前
aaa完成签到,获得积分10
10秒前
LC完成签到 ,获得积分10
11秒前
11秒前
山城完成签到 ,获得积分10
11秒前
乔qiao完成签到,获得积分10
12秒前
欢欢欢乐乐乐乐完成签到,获得积分10
12秒前
12秒前
YY-Bubble完成签到,获得积分10
12秒前
13秒前
悲伤水凝胶完成签到,获得积分10
13秒前
novose完成签到,获得积分10
13秒前
13秒前
小怪兽发布了新的文献求助10
14秒前
畅快的谷秋完成签到 ,获得积分10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294740
求助须知:如何正确求助?哪些是违规求助? 2930629
关于积分的说明 8446865
捐赠科研通 2602968
什么是DOI,文献DOI怎么找? 1420801
科研通“疑难数据库(出版商)”最低求助积分说明 660682
邀请新用户注册赠送积分活动 643500