Principal components analysis (PCA)

主成分分析 特征向量 校长(计算机安全) 协方差矩阵 协方差 多元统计 核主成分分析 变化(天文学) 统计 数学 计算机科学 差异(会计) 计量经济学 人工智能 物理 会计 核方法 业务 操作系统 量子力学 天体物理学 支持向量机
作者
Andrzej Maćkiewicz,Waldemar Ratajczak
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:19 (3): 303-342 被引量:423
标识
DOI:10.1016/0098-3004(93)90090-r
摘要

Principal Components Analysis (PCA) as a method of multivariate statistics was created before the Second World War. However, the wider application of this method only occurred in the 1960s, during the “Quantitative Revolution” in the Natural and Social Sciences. The main reason for this time-lag was the huge difficulty posed by calculations involving this method. Only with the advent and development of computers did the almost unlimited application of multivariate statistical methods, including principal components, become possible. At the same time, requirements arose for precise numerical methods concerning, among other things, the calculation of eigenvalues and eigenvectors, because the application of principal components to technical problems required absolute accuracy. On the other hand, numerous applications in Social Sciences gave rise to a significant increase in the ability to interpret these nonobservable variables, which is just what the principal components are. In the application of principal components, the problem is not only to do with their formal properties but above all, their empirical origins. The authors considered these two tendencies during the creation of the program for principal components. This program—entitled PCA—accompanies this paper. It analyzes consecutively, matrices of variance-covariance and correlations, and performs the following functions: - the determination of eigenvalues and eigenvectors of these matrices. - the testing of principal components. - the calculation of coefficients of determination between selected components and the initial variables, and the testing of these coefficients, - the determination of the share of variation of all the initial variables in the variation of particular components, - construction of a dendrite for the initial set of variables, - the construction of a dendrite for a selected pattern of the principal components, - the scatter of the objects studied in a selected coordinate system. Thus, the PCA program performs many more functions especially in testing and graphics, than PCA programs in conventional statistical packages. Included in this paper are a theoretical description of principal components, the basic rules for their interpretation and also statistical testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
娃哈哈发布了新的文献求助10
2秒前
vincen91发布了新的文献求助10
3秒前
3秒前
千万雷同发布了新的文献求助10
4秒前
4秒前
权千万发布了新的文献求助10
4秒前
LemonK完成签到,获得积分10
4秒前
夜空完成签到,获得积分20
5秒前
6秒前
zhangerdan完成签到,获得积分10
6秒前
科学家发布了新的文献求助10
7秒前
清a完成签到,获得积分10
7秒前
8秒前
LemonK发布了新的文献求助20
8秒前
英俊的铭应助高贵的往事采纳,获得10
8秒前
酷波er应助xiaoduan采纳,获得10
9秒前
搜集达人应助ljc采纳,获得10
11秒前
bycq完成签到,获得积分10
11秒前
深情安青应助才哥采纳,获得10
11秒前
12秒前
linlinzi发布了新的文献求助10
12秒前
木昜完成签到,获得积分10
13秒前
辣椒酱发布了新的文献求助10
13秒前
陆千万发布了新的文献求助10
13秒前
14秒前
娃哈哈完成签到,获得积分10
14秒前
14秒前
14秒前
14秒前
冰淇淋完成签到,获得积分10
16秒前
大个应助SF2768采纳,获得10
16秒前
李健的小迷弟应助Jia采纳,获得10
16秒前
kai0305完成签到,获得积分10
17秒前
夜空发布了新的文献求助30
17秒前
tian关注了科研通微信公众号
18秒前
现实的从蓉完成签到,获得积分20
19秒前
19秒前
jo发布了新的文献求助10
20秒前
LGChemistry发布了新的文献求助10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148931
求助须知:如何正确求助?哪些是违规求助? 2799908
关于积分的说明 7837731
捐赠科研通 2457479
什么是DOI,文献DOI怎么找? 1307870
科研通“疑难数据库(出版商)”最低求助积分说明 628312
版权声明 601685