Principal components analysis (PCA)

主成分分析 特征向量 校长(计算机安全) 协方差矩阵 协方差 多元统计 核主成分分析 变化(天文学) 统计 数学 计算机科学 差异(会计) 计量经济学 人工智能 物理 会计 核方法 业务 操作系统 量子力学 天体物理学 支持向量机
作者
Andrzej Maćkiewicz,Waldemar Ratajczak
出处
期刊:Computers & Geosciences [Elsevier BV]
卷期号:19 (3): 303-342 被引量:423
标识
DOI:10.1016/0098-3004(93)90090-r
摘要

Principal Components Analysis (PCA) as a method of multivariate statistics was created before the Second World War. However, the wider application of this method only occurred in the 1960s, during the “Quantitative Revolution” in the Natural and Social Sciences. The main reason for this time-lag was the huge difficulty posed by calculations involving this method. Only with the advent and development of computers did the almost unlimited application of multivariate statistical methods, including principal components, become possible. At the same time, requirements arose for precise numerical methods concerning, among other things, the calculation of eigenvalues and eigenvectors, because the application of principal components to technical problems required absolute accuracy. On the other hand, numerous applications in Social Sciences gave rise to a significant increase in the ability to interpret these nonobservable variables, which is just what the principal components are. In the application of principal components, the problem is not only to do with their formal properties but above all, their empirical origins. The authors considered these two tendencies during the creation of the program for principal components. This program—entitled PCA—accompanies this paper. It analyzes consecutively, matrices of variance-covariance and correlations, and performs the following functions: - the determination of eigenvalues and eigenvectors of these matrices. - the testing of principal components. - the calculation of coefficients of determination between selected components and the initial variables, and the testing of these coefficients, - the determination of the share of variation of all the initial variables in the variation of particular components, - construction of a dendrite for the initial set of variables, - the construction of a dendrite for a selected pattern of the principal components, - the scatter of the objects studied in a selected coordinate system. Thus, the PCA program performs many more functions especially in testing and graphics, than PCA programs in conventional statistical packages. Included in this paper are a theoretical description of principal components, the basic rules for their interpretation and also statistical testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任大坤完成签到,获得积分10
1秒前
4秒前
Hanmos3624完成签到,获得积分10
5秒前
5秒前
jxm驳回了Jasper应助
5秒前
五五发布了新的文献求助10
7秒前
慕青应助早茶可口采纳,获得10
7秒前
lina发布了新的文献求助10
8秒前
8秒前
9秒前
LZ发布了新的文献求助10
9秒前
9秒前
Kevin完成签到,获得积分10
11秒前
传奇3应助林士采纳,获得10
12秒前
HH发布了新的文献求助30
13秒前
自然1111发布了新的文献求助30
13秒前
14秒前
轻松千山发布了新的文献求助10
15秒前
LZ完成签到,获得积分10
15秒前
17秒前
17秒前
JamesPei应助薇笑不慌采纳,获得10
18秒前
充电宝应助WZJ采纳,获得10
19秒前
hz52发布了新的文献求助30
19秒前
Liao完成签到,获得积分10
19秒前
林结衣完成签到,获得积分10
20秒前
20秒前
20秒前
赞zan发布了新的文献求助30
21秒前
12完成签到 ,获得积分10
22秒前
尼i完成签到,获得积分10
22秒前
文城完成签到 ,获得积分10
23秒前
Ava应助yyt采纳,获得10
24秒前
曾经的孤萍完成签到,获得积分20
25秒前
luan完成签到,获得积分10
26秒前
26秒前
缓慢的谷秋应助坚强枫采纳,获得10
27秒前
赞zan完成签到,获得积分10
28秒前
29秒前
鲤鱼梦易发布了新的文献求助10
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961020
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134825
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790305
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150