亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Principal components analysis (PCA)

主成分分析 特征向量 校长(计算机安全) 协方差矩阵 协方差 多元统计 核主成分分析 变化(天文学) 统计 数学 计算机科学 差异(会计) 计量经济学 人工智能 物理 会计 核方法 业务 操作系统 量子力学 天体物理学 支持向量机
作者
Andrzej Maćkiewicz,Waldemar Ratajczak
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:19 (3): 303-342 被引量:1109
标识
DOI:10.1016/0098-3004(93)90090-r
摘要

Principal Components Analysis (PCA) as a method of multivariate statistics was created before the Second World War. However, the wider application of this method only occurred in the 1960s, during the “Quantitative Revolution” in the Natural and Social Sciences. The main reason for this time-lag was the huge difficulty posed by calculations involving this method. Only with the advent and development of computers did the almost unlimited application of multivariate statistical methods, including principal components, become possible. At the same time, requirements arose for precise numerical methods concerning, among other things, the calculation of eigenvalues and eigenvectors, because the application of principal components to technical problems required absolute accuracy. On the other hand, numerous applications in Social Sciences gave rise to a significant increase in the ability to interpret these nonobservable variables, which is just what the principal components are. In the application of principal components, the problem is not only to do with their formal properties but above all, their empirical origins. The authors considered these two tendencies during the creation of the program for principal components. This program—entitled PCA—accompanies this paper. It analyzes consecutively, matrices of variance-covariance and correlations, and performs the following functions: - the determination of eigenvalues and eigenvectors of these matrices. - the testing of principal components. - the calculation of coefficients of determination between selected components and the initial variables, and the testing of these coefficients, - the determination of the share of variation of all the initial variables in the variation of particular components, - construction of a dendrite for the initial set of variables, - the construction of a dendrite for a selected pattern of the principal components, - the scatter of the objects studied in a selected coordinate system. Thus, the PCA program performs many more functions especially in testing and graphics, than PCA programs in conventional statistical packages. Included in this paper are a theoretical description of principal components, the basic rules for their interpretation and also statistical testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Antares完成签到,获得积分10
5秒前
Owen应助顺利甜瓜采纳,获得10
32秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
大胆菲音发布了新的文献求助30
2分钟前
科目三应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
科研蓝月发布了新的文献求助150
5分钟前
5分钟前
科研蓝月完成签到,获得积分10
5分钟前
5分钟前
我亦化身东海去完成签到,获得积分10
5分钟前
打打应助我亦化身东海去采纳,获得10
5分钟前
pursu发布了新的文献求助10
5分钟前
愉快的犀牛完成签到 ,获得积分10
5分钟前
Dengjia完成签到,获得积分20
5分钟前
Weiyu完成签到 ,获得积分10
5分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
TXZ06完成签到,获得积分10
7分钟前
kuoping完成签到,获得积分0
7分钟前
五五完成签到 ,获得积分10
8分钟前
9分钟前
共享精神应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
顺利甜瓜发布了新的文献求助10
9分钟前
鲤鱼山人完成签到 ,获得积分10
9分钟前
顺利甜瓜完成签到,获得积分10
9分钟前
张来完成签到 ,获得积分10
9分钟前
洒脱完成签到,获得积分10
9分钟前
AA完成签到 ,获得积分10
10分钟前
10分钟前
陈宇发布了新的文献求助10
10分钟前
orixero应助陈宇采纳,获得10
10分钟前
陈宇完成签到,获得积分10
10分钟前
duan完成签到 ,获得积分10
10分钟前
点点完成签到 ,获得积分10
11分钟前
科研通AI6应助科研通管家采纳,获得10
11分钟前
12分钟前
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357315
求助须知:如何正确求助?哪些是违规求助? 4488736
关于积分的说明 13972488
捐赠科研通 4389979
什么是DOI,文献DOI怎么找? 2411784
邀请新用户注册赠送积分活动 1404374
关于科研通互助平台的介绍 1378621