Principal components analysis (PCA)

主成分分析 特征向量 校长(计算机安全) 协方差矩阵 协方差 多元统计 核主成分分析 变化(天文学) 统计 数学 计算机科学 差异(会计) 计量经济学 人工智能 物理 会计 核方法 业务 操作系统 量子力学 天体物理学 支持向量机
作者
Andrzej Maćkiewicz,Waldemar Ratajczak
出处
期刊:Computers & Geosciences [Elsevier]
卷期号:19 (3): 303-342 被引量:1109
标识
DOI:10.1016/0098-3004(93)90090-r
摘要

Principal Components Analysis (PCA) as a method of multivariate statistics was created before the Second World War. However, the wider application of this method only occurred in the 1960s, during the “Quantitative Revolution” in the Natural and Social Sciences. The main reason for this time-lag was the huge difficulty posed by calculations involving this method. Only with the advent and development of computers did the almost unlimited application of multivariate statistical methods, including principal components, become possible. At the same time, requirements arose for precise numerical methods concerning, among other things, the calculation of eigenvalues and eigenvectors, because the application of principal components to technical problems required absolute accuracy. On the other hand, numerous applications in Social Sciences gave rise to a significant increase in the ability to interpret these nonobservable variables, which is just what the principal components are. In the application of principal components, the problem is not only to do with their formal properties but above all, their empirical origins. The authors considered these two tendencies during the creation of the program for principal components. This program—entitled PCA—accompanies this paper. It analyzes consecutively, matrices of variance-covariance and correlations, and performs the following functions: - the determination of eigenvalues and eigenvectors of these matrices. - the testing of principal components. - the calculation of coefficients of determination between selected components and the initial variables, and the testing of these coefficients, - the determination of the share of variation of all the initial variables in the variation of particular components, - construction of a dendrite for the initial set of variables, - the construction of a dendrite for a selected pattern of the principal components, - the scatter of the objects studied in a selected coordinate system. Thus, the PCA program performs many more functions especially in testing and graphics, than PCA programs in conventional statistical packages. Included in this paper are a theoretical description of principal components, the basic rules for their interpretation and also statistical testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴旭东发布了新的文献求助10
1秒前
1秒前
CDreamY完成签到,获得积分10
1秒前
che完成签到,获得积分10
1秒前
善学以致用应助高金龙采纳,获得10
2秒前
2秒前
2秒前
小东西发布了新的文献求助10
3秒前
3秒前
liu123完成签到,获得积分20
3秒前
TNNzuan完成签到,获得积分10
3秒前
瑞少完成签到,获得积分10
4秒前
du完成签到 ,获得积分10
4秒前
oyyl完成签到,获得积分20
4秒前
ava发布了新的文献求助10
4秒前
正直的半梅完成签到,获得积分10
4秒前
叁金发布了新的文献求助10
5秒前
6秒前
bmhs2017应助廖丽文采纳,获得10
6秒前
脑洞疼应助迅速哈密瓜采纳,获得10
6秒前
6秒前
ding应助Ninico采纳,获得10
6秒前
小思发布了新的文献求助10
7秒前
XMY完成签到 ,获得积分10
8秒前
是小段呀完成签到 ,获得积分10
8秒前
搜集达人应助正直的半梅采纳,获得10
9秒前
秋月黄完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
在水一方应助舒心盼海采纳,获得10
11秒前
11秒前
znt完成签到,获得积分20
12秒前
咖飞完成签到,获得积分10
12秒前
激昂的千秋完成签到,获得积分10
12秒前
12秒前
12秒前
小张同学完成签到,获得积分10
13秒前
刘均珺发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769