材料科学
碳纳米管
石墨烯
复合材料
断裂韧性
环氧树脂
纳米复合材料
极限抗拉强度
韧性
杨氏模量
纳米技术
作者
Mohammad A. Rafiee,Javad Rafiee,Zhou Wang,Huaihe Song,Zhong‐Zhen Yu,Nikhil Koratkar
出处
期刊:ACS Nano
[American Chemical Society]
日期:2009-12-03
卷期号:3 (12): 3884-3890
被引量:2635
摘要
In this study, the mechanical properties of epoxy nanocomposites with graphene platelets, single-walled carbon nanotubes, and multi-walled carbon nanotube additives were compared at a nanofiller weight fraction of 0.1 ± 0.002%. The mechanical properties measured were the Young's modulus, ultimate tensile strength, fracture toughness, fracture energy, and the material's resistance to fatigue crack propagation. The results indicate that graphene platelets significantly out-perform carbon nanotube additives. The Young's modulus of the graphene nanocomposite was ∼31% greater than the pristine epoxy as compared to ∼3% increase for single-walled carbon nanotubes. The tensile strength of the baseline epoxy was enhanced by ∼40% with graphene platelets compared to ∼14% improvement for multi-walled carbon nanotubes. The mode I fracture toughness of the nanocomposite with graphene platelets showed ∼53% increase over the epoxy compared to ∼20% improvement for multi-walled carbon nanotubes. The fatigue resistance results also showed significantly different trends. While the fatigue suppression response of nanotube/epoxy composites degrades dramatically as the stress intensity factor amplitude is increased, the reverse effect is seen for graphene-based nanocomposites. The superiority of graphene platelets over carbon nanotubes in terms of mechanical properties enhancement may be related to their high specific surface area, enhanced nanofiller−matrix adhesion/interlocking arising from their wrinkled (rough) surface, as well as the two-dimensional (planar) geometry of graphene platelets.
科研通智能强力驱动
Strongly Powered by AbleSci AI