插层(化学)
材料科学
电化学
钒
离子
相图
居里温度
空位缺陷
相变
相(物质)
凝聚态物理
电极
结晶学
化学物理
化学
无机化学
铁磁性
物理
物理化学
有机化学
冶金
作者
Marie Guignard,Christophe Didier,Jacques Darriet,P. Bordet,Erik Elkaïm,Claude Delmas
出处
期刊:Nature Materials
[Springer Nature]
日期:2012-11-11
卷期号:12 (1): 74-80
被引量:400
摘要
Layered oxides are the subject of intense studies either for their properties as electrode materials for high-energy batteries or for their original physical properties due to the strong electronic correlations resulting from their unique structure. Here we present the detailed phase diagram of the layered P2-Na(x)VO(2) system determined from electrochemical intercalation/deintercalation in sodium batteries and in situ X-ray diffraction experiments. It shows that four main single-phase domains exist within the 0.5≤x≤0.9 range. During the sodium deintercalation (intercalation), they differ from one another in the sodium/vacancy ordering between the VO(2) slabs, which leads to commensurable or incommensurable superstructures. The electrochemical curve reveals that three peculiar compositions exhibit special structures for x = 1/2, 5/8 and 2/3. The detailed structural characterization of the P2-Na(1/2)VO(2) phase shows that the Na(+) ions are perfectly ordered to minimize Na(+)/Na(+) electrostatic repulsions. Within the VO(2) layers, the vanadium ions form pseudo-trimers with very short V-V distances (two at 2.581 Å and one at 2.687 Å). This original distribution leads to a peculiar magnetic behaviour with a low magnetic susceptibility and an unexpected low Curie constant. This phase also presents a first-order structural transition above room temperature accompanied by magnetic and electronic transitions. This work opens up a new research domain in the field of strongly electron-correlated materials. From the electrochemical point of view this system may be at the origin of an entire material family optimized by cationic substitutions.
科研通智能强力驱动
Strongly Powered by AbleSci AI