亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimizing thermoelectric performance of Cd-doped β-Zn4Sb3 through self-adjusting carrier concentration

材料科学 热电效应 塞贝克系数 功勋 声子散射 热导率 兴奋剂 分析化学(期刊) 热电材料 电阻率和电导率 声子 凝聚态物理 复合材料 热力学 光电子学 电气工程 物理 工程类 色谱法 化学
作者
Shanyu Wang,Fan Fu,Xiaoyu She,Gang Zheng,Li Han,Xinfeng Tang
出处
期刊:Intermetallics [Elsevier]
卷期号:19 (12): 1823-1830 被引量:31
标识
DOI:10.1016/j.intermet.2011.07.020
摘要

Crack-free Zn3.96+xCd0.04Sb3 (x = −0.05, 0.0, 0.05 and 0.1) ingots were successfully synthesized by a melting followed by a precisely controlled slow cooling process. The facile control of Zn content realizes the effective self-adjustment of carrier concentration, as well as the optimization of the thermoelectric figure of merit. The Zn-deficiency and stoichiometric samples are single phase, whereas a slight metal Zn phase can be detected in other two Zn-rich samples existing as forms of numerous evenly distributed nano-clusters with size of 20–50 nm and a spot of micro-scale precipitations embedded in the matrix. In particular, these multi-scale microstructures combined with the subtle variation of interstitial Zn apparently intensify phonon scattering and give rise to a “phonon-glass” feature of Zn-rich samples. However, Zn-deficiency sample benefiting from high Seebeck coefficient, shows a high power factor (>1.0 mW m−1 K−1) in the entire temperature range and a maximum value of 1.26 mW m−1 K−1 at 660 K. As a result, the enhanced effective hole mass by a slight Cd-doping coupled with the extremely low lattice thermal conductivity originated from crystalline complexities lead to a high figure of merit of 1.23 at 660 K for Zn3.91Cd0.04Sb3 sample, which is comparable with the highest value reported by T. Caillat et al. [T. Caillat et al. J Phys Chem Solids 1997; 58: 1119−25]. Furthermore, this study demonstrates a simple and easily-industrialized melting combined with slow cooling technique making the high performance β-Zn4Sb3 a promising candidate for low-grade waste heat recovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sy完成签到 ,获得积分10
19秒前
情怀应助安详的面包采纳,获得10
23秒前
qqq完成签到,获得积分10
32秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
远方完成签到,获得积分10
1分钟前
浮游应助wuran采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
3分钟前
佳佳发布了新的文献求助10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
Akim应助佳佳采纳,获得10
3分钟前
3分钟前
NexusExplorer应助huaixup采纳,获得10
3分钟前
3分钟前
佳佳发布了新的文献求助10
3分钟前
狂野的含烟完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
Said1223发布了新的文献求助10
4分钟前
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
Gryphon发布了新的文献求助10
5分钟前
5分钟前
huaixup发布了新的文献求助10
5分钟前
huaixup完成签到 ,获得积分10
6分钟前
小马甲应助yf采纳,获得10
6分钟前
6分钟前
简单的莫言完成签到,获得积分10
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650990
求助须知:如何正确求助?哪些是违规求助? 4782616
关于积分的说明 15052919
捐赠科研通 4809775
什么是DOI,文献DOI怎么找? 2572590
邀请新用户注册赠送积分活动 1528583
关于科研通互助平台的介绍 1487585