Adaptive Class Center Generalization Network: A Sparse Domain-Regressive Framework for Bearing Fault Diagnosis Under Unknown Working Conditions

判别式 初始化 计算机科学 人工智能 模式识别(心理学) 不变(物理) 断层(地质) 特征(语言学) 特征提取 机器学习 数据挖掘 数学 语言学 哲学 地震学 数学物理 程序设计语言 地质学
作者
Wang Bin,Long Wen,Xinyu Li,Liang Gao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-11 被引量:16
标识
DOI:10.1109/tim.2023.3273659
摘要

Fault diagnosis is essential to ensure the bearing safety in the smart manufacturing. As the rotating bearings usually work under the variable working conditions, there may exist the differences between the data distributions of the training and test domains. Domain adaptation fault diagnosis (DAFD) has been adopted to handle with this domain shift phenomenon. But DAFD relies on the target domain heavily during its training process, while the target domain is always unavailable in real-world scenarios. To handle with this situation, this paper proposed a new adaptive class center generalization network (ACCGN). ACCGN is used to learn invariant feature representations of orientation signals from multiple source domains. First, ACCGN is used to learn the discriminative invariant fault feature from multi-source domains, and it combines the sparse domain regression framework and central loss to optimize the data features from inter- and intra-class simultaneously. Second, a new adaptive method is proposed to update the center in central loss and it can diminish the effect on the initialization center location. Third, a sparse domain regression framework is used to learn the inter-class invariant features. The proposed ACCGN has been tested on two famous bearing datasets, and the results have shown the effectiveness of the proposed ACCGN on the CWRU and JNU datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
暮色完成签到,获得积分10
刚刚
坚守初心完成签到,获得积分10
刚刚
科研通AI2S应助白衣轻叹采纳,获得10
1秒前
2秒前
田様应助喻初彤采纳,获得10
2秒前
2秒前
老詹头发布了新的文献求助10
3秒前
bkagyin应助可可采纳,获得10
5秒前
芝芝莓莓应助躺平不摆烂采纳,获得10
5秒前
5秒前
涂丁元发布了新的文献求助10
6秒前
竹子完成签到,获得积分10
7秒前
一一发布了新的文献求助10
7秒前
jy完成签到,获得积分10
8秒前
10秒前
11秒前
12秒前
喻初彤发布了新的文献求助10
14秒前
柏铸海发布了新的文献求助10
14秒前
在水一方应助PZD采纳,获得10
15秒前
orixero应助半导体物理采纳,获得10
16秒前
16秒前
17秒前
NL14D发布了新的文献求助200
17秒前
长情的一刀完成签到,获得积分10
18秒前
852应助小陈采纳,获得10
18秒前
好旺发布了新的文献求助10
18秒前
一一完成签到,获得积分10
19秒前
ismm2002发布了新的文献求助10
21秒前
小二郎应助刻苦大侠采纳,获得10
23秒前
mzf发布了新的文献求助10
24秒前
现代的访曼应助XCHI采纳,获得20
28秒前
30秒前
30秒前
Duke完成签到,获得积分10
30秒前
漫漫完成签到 ,获得积分10
31秒前
华仔应助祯果粒采纳,获得10
31秒前
32秒前
量子星尘发布了新的文献求助10
32秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952868
求助须知:如何正确求助?哪些是违规求助? 3498310
关于积分的说明 11091370
捐赠科研通 3228948
什么是DOI,文献DOI怎么找? 1785159
邀请新用户注册赠送积分活动 869202
科研通“疑难数据库(出版商)”最低求助积分说明 801377