生物
效应器
细胞命运测定
机制(生物学)
多元化(营销策略)
托换
神经科学
多样性(控制论)
认知科学
免疫系统
计算生物学
进化生物学
免疫学
遗传学
计算机科学
人工智能
认识论
基因
心理学
转录因子
营销
土木工程
业务
哲学
工程类
作者
Rob J. de Boer,Andrew J. Yates
出处
期刊:Annual Review of Immunology
[Annual Reviews]
日期:2023-04-26
卷期号:41 (1): 513-532
被引量:3
标识
DOI:10.1146/annurev-immunol-101721-040924
摘要
Many of the pathways that underlie the diversification of naive T cells into effector and memory subsets, and the maintenance of these populations, remain controversial. In recent years a variety of experimental tools have been developed that allow us to follow the fates of cells and their descendants. In this review we describe how mathematical models provide a natural language for describing the growth, loss, and differentiation of cell populations. By encoding mechanistic descriptions of cell behavior, models can help us interpret these new datasets and reveal the rules underpinning T cell fate decisions, both at steady state and during immune responses.
科研通智能强力驱动
Strongly Powered by AbleSci AI