Towards Robust Decision-Making for Autonomous Driving on Highway

强化学习 计算机科学 人工智能 分布(数学) 可靠性(半导体) 机器学习 运筹学 工程类 数学 量子力学 物理 数学分析 功率(物理)
作者
Kai Yang,Xiaolin Tang,Sen Qiu,Shufeng Jin,Zichun Wei,Hong Wang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (9): 11251-11263 被引量:88
标识
DOI:10.1109/tvt.2023.3268500
摘要

Reinforcement learning (RL) methods are commonly regarded as effective solutions for designing intelligent driving policies. Nonetheless, even if the RL policy is converged after training, it is notoriously difficult to ensure safety. In particular, RL policy is susceptible to insecurity in the presence of long-tail or unseen traffic scenarios, i.e. , out-of-distribution test data. Therefore, the design of the RL-based decision-making method must account for this shift in distribution. This paper proposes a robust decision-making framework for autonomous driving on the highway to improve driving safety. First, a Deep Deterministic Policy Gradient (DDPG)-based RL policy that directly maps observations to actions is constructed. Subsequently, the model uncertainty of the DDPG policy is evaluated at runtime to quantify the policy's reliability and identify unseen scenarios. In addition, a complementary principle-based policy is developed using the intelligent driver model (IDM) and the model for minimizing overall braking induced by lane changes (MOBIL). It will take over the DDPG policy when encountering unseen scenarios to guarantee a lower-bound performance of the decision-making system. Finally, the proposed method is implemented on an embedded system, i.e. , NVIDIA Jetson AGX Xavier, and out-of-training distribution challenging cases are considered in the experiment, i.e. , observation with sensor noise, traffic density increasing significantly, objects falling from the front vehicle, and road construction causing temporal changes in road structure. Results indicate that the proposed framework outperforms state-of-the-art benchmarks. Additionally, the code is provided.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
LXZY发布了新的文献求助10
1秒前
阿鹿发布了新的文献求助10
2秒前
2秒前
2秒前
流水应助科研通管家采纳,获得20
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
cell应助科研通管家采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
QQ发布了新的文献求助10
2秒前
2秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
流水应助科研通管家采纳,获得20
3秒前
科目三应助Dahlia采纳,获得10
3秒前
明棋发布了新的文献求助10
3秒前
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
cell应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
3秒前
frankwzp应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
温暖的俊驰完成签到,获得积分10
3秒前
3秒前
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
nuaa_shy应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
frankwzp应助科研通管家采纳,获得10
3秒前
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
Lucas应助肖旻采纳,获得10
3秒前
nuaa_shy应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784354
求助须知:如何正确求助?哪些是违规求助? 5682151
关于积分的说明 15463941
捐赠科研通 4913559
什么是DOI,文献DOI怎么找? 2644745
邀请新用户注册赠送积分活动 1592607
关于科研通互助平台的介绍 1547134