已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Towards Robust Decision-Making for Autonomous Driving on Highway

强化学习 计算机科学 人工智能 分布(数学) 可靠性(半导体) 机器学习 运筹学 工程类 数学 量子力学 物理 数学分析 功率(物理)
作者
Kai Yang,Xiaolin Tang,Sen Qiu,Shufeng Jin,Zichun Wei,Hong Wang
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:72 (9): 11251-11263 被引量:48
标识
DOI:10.1109/tvt.2023.3268500
摘要

Reinforcement learning (RL) methods are commonly regarded as effective solutions for designing intelligent driving policies. Nonetheless, even if the RL policy is converged after training, it is notoriously difficult to ensure safety. In particular, RL policy is susceptible to insecurity in the presence of long-tail or unseen traffic scenarios, i.e. , out-of-distribution test data. Therefore, the design of the RL-based decision-making method must account for this shift in distribution. This paper proposes a robust decision-making framework for autonomous driving on the highway to improve driving safety. First, a Deep Deterministic Policy Gradient (DDPG)-based RL policy that directly maps observations to actions is constructed. Subsequently, the model uncertainty of the DDPG policy is evaluated at runtime to quantify the policy's reliability and identify unseen scenarios. In addition, a complementary principle-based policy is developed using the intelligent driver model (IDM) and the model for minimizing overall braking induced by lane changes (MOBIL). It will take over the DDPG policy when encountering unseen scenarios to guarantee a lower-bound performance of the decision-making system. Finally, the proposed method is implemented on an embedded system, i.e. , NVIDIA Jetson AGX Xavier, and out-of-training distribution challenging cases are considered in the experiment, i.e. , observation with sensor noise, traffic density increasing significantly, objects falling from the front vehicle, and road construction causing temporal changes in road structure. Results indicate that the proposed framework outperforms state-of-the-art benchmarks. Additionally, the code is provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得20
1秒前
FIN应助科研通管家采纳,获得30
1秒前
1秒前
2秒前
爱笑映菡完成签到,获得积分10
2秒前
4秒前
Jasper应助fafafa采纳,获得20
5秒前
7秒前
姚琛发布了新的文献求助30
8秒前
8秒前
三十七度医完成签到,获得积分10
9秒前
虚幻友瑶发布了新的文献求助10
9秒前
夜游的鱼完成签到 ,获得积分10
10秒前
RC_Wang发布了新的文献求助10
11秒前
hjkk发布了新的文献求助10
12秒前
12秒前
飞舞伤寒完成签到,获得积分10
14秒前
16秒前
17秒前
18秒前
hjkk完成签到,获得积分10
20秒前
xbx1991发布了新的文献求助10
20秒前
20秒前
21秒前
23秒前
学习。。发布了新的文献求助10
28秒前
PATTOM完成签到,获得积分10
30秒前
情怀应助tiantian采纳,获得20
35秒前
35秒前
Akim应助无辜的秀采纳,获得10
38秒前
ttttsy完成签到 ,获得积分10
38秒前
40秒前
柏林寒冬应助松间蓝雾采纳,获得10
40秒前
41秒前
43秒前
哆啦A梦发布了新的文献求助10
46秒前
47秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959900
求助须知:如何正确求助?哪些是违规求助? 3506106
关于积分的说明 11127978
捐赠科研通 3238061
什么是DOI,文献DOI怎么找? 1789483
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803021