Reinforcement Learning Based Dual-UAV Trajectory Optimization for Secure Communication

强化学习 计算机科学 马尔可夫决策过程 人为噪声 基站 干扰 保密 发射机 实时计算 物理层 灵活性(工程) 增强学习 无线 计算机网络 马尔可夫过程 人工智能 计算机安全 频道(广播) 电信 统计 物理 数学 热力学
作者
Zhouyi Qian,Zhixiang Deng,Changchun Cai,Haochen Li
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (9): 2008-2008 被引量:1
标识
DOI:10.3390/electronics12092008
摘要

Unmanned aerial vehicles (UAV) can serve as aerial base stations for users due to their flexibility, low cost, and other characteristics. However, due to the high flight position of UAVs, the air-to-ground (ATG) channels usually dominate with line-of-sight (LoS), which can be easily eavesdropped by multiple eavesdroppers. This poses a challenge to secure communication between UAVs and ground users. In this paper, we study a UAV-aided secure communication in an urban scenario where a legitimate UAV Alice transmits confidential information to a legitimate user Bob on the ground in the presence of several eavesdroppers around it and a UAV Jammer sends artificial noise to interfere with the eavesdroppers. We aim to maximize the physical layer secrecy rates in the system by jointly optimizing the trajectories of UAVs and their transmitting power. Considering the time-varying characteristics of channels, this problem is modeled as a Markov decision process (MDP). An improved algorithm based on double-DQN is proposed in the paper to solve this MDP problem. Simulation results show that the proposed algorithm can converge quickly under different environments, and the UAV transmitter and UAV jammers can find the optimal location correctly to maximize the information secrecy rate. It also shows that the double-DQN (DDQN) based algorithm works better than the Q-learning and deep Q-learning network (DQN).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ENG完成签到,获得积分10
1秒前
张豪杰发布了新的文献求助10
3秒前
4秒前
5秒前
xuz完成签到,获得积分10
6秒前
chen完成签到,获得积分10
6秒前
852应助155采纳,获得10
9秒前
ALON完成签到,获得积分10
9秒前
10秒前
fenghy完成签到,获得积分10
10秒前
11秒前
失眠采白完成签到,获得积分10
12秒前
13秒前
宓之云完成签到,获得积分10
14秒前
yuan关注了科研通微信公众号
14秒前
喵公进货完成签到,获得积分20
15秒前
zcbb发布了新的文献求助10
15秒前
17秒前
爱科研发布了新的文献求助10
17秒前
充电宝应助明月照我程采纳,获得10
18秒前
库库写论文完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
宓之云发布了新的文献求助10
18秒前
hd发布了新的文献求助10
19秒前
李昊隆完成签到,获得积分20
20秒前
胡说八道完成签到 ,获得积分10
21秒前
21秒前
全蛋857发布了新的文献求助10
21秒前
超级芷云发布了新的文献求助10
22秒前
22秒前
Owen应助zcbb采纳,获得10
25秒前
25秒前
夏侯三问完成签到,获得积分10
26秒前
Jackcaosky完成签到 ,获得积分10
27秒前
爱科研完成签到,获得积分20
28秒前
现代的访曼应助ppjkq1采纳,获得20
29秒前
29秒前
29秒前
孢子完成签到,获得积分10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497949
关于积分的说明 11089475
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309