Evaluation of aroma quality using multidimensional olfactory information during black tea fermentation

芳香 红茶 发酵 食品科学 质量(理念) 计算机科学 化学 物理 量子力学
作者
Ting An,Yang Li,Xi Tian,Shuxiang Fan,Dandan Duan,Chunjiang Zhao,Wenqian Huang,Chunwang Dong
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:371: 132518-132518 被引量:26
标识
DOI:10.1016/j.snb.2022.132518
摘要

Thus far, the intelligent evaluation of aroma quality during black tea fermentation remains an unsolved problem due to the hysteresis quality of traditional sensory evaluation methods. In our study, a combination of hyperspectral imaging technology and colorimetric sensing array (CSA) was used to collect the aroma information during black tea fermentation. Subsequently, different data fusion strategies coupled with the support vector regression (SVR) model were used to predict the aroma scores of finished tea at different fermentation times. The performance of the prediction model using data fusion strategies was better than that using each sensitive dye. The results demonstrated that the middle-level-competitive adaptive reweighted sampling (CARS) strategy showed the best performance, with the correlation coefficient of the prediction set (Rp) at 0.969, the relative percent deviation (RPD) at 4.091, and the variable compression rate at 96.83%. Based on the middle-level-CARS strategy, the discrimination rate of aroma quality for calibration and prediction set were 100% and 94.29%, respectively. The overall results sufficiently revealed that our proposed strategy provides a theoretical basis for the intelligent processing of black tea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HOLLOW完成签到,获得积分10
刚刚
1秒前
1秒前
100发布了新的文献求助10
2秒前
2秒前
2秒前
科研通AI6应助鹅糖采纳,获得10
2秒前
wennuan0913完成签到 ,获得积分10
2秒前
Crh发布了新的文献求助10
2秒前
年轻葶完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
小二郎应助中杯西瓜冰采纳,获得10
4秒前
airchinaadmin完成签到,获得积分10
4秒前
bkagyin应助Aqk9采纳,获得10
5秒前
chunyan_sysu发布了新的文献求助10
5秒前
5秒前
C1992003558发布了新的文献求助10
5秒前
cishiwen发布了新的文献求助10
5秒前
6秒前
6秒前
无极微光应助叼得一采纳,获得20
6秒前
谦让的紫烟完成签到,获得积分20
7秒前
玛卡巴卡发布了新的文献求助10
7秒前
xxx完成签到,获得积分10
7秒前
Hilda007应助jelle采纳,获得10
8秒前
9秒前
9秒前
温柔梦松发布了新的文献求助10
9秒前
9秒前
10秒前
爱丽丝敏完成签到,获得积分10
10秒前
FashionBoy应助雨梦迟歌采纳,获得10
11秒前
沙漠水发布了新的文献求助10
12秒前
白枫发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
领导范儿应助luraaaa采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244