Machine Learning in Tissue Engineering

脚手架 组织工程 计算机科学 生物材料 再生医学 人工智能 生化工程 纳米技术 工程类 生物医学工程 材料科学 生物 干细胞 遗传学 数据库
作者
Jason Guo,Michael Januszyk,Michael T. Longaker
出处
期刊:Tissue Engineering Part A [Mary Ann Liebert]
卷期号:29 (1-2): 2-19 被引量:8
标识
DOI:10.1089/ten.tea.2022.0128
摘要

Machine learning (ML) and artificial intelligence have accelerated scientific discovery, augmented clinical practice, and deepened fundamental understanding of many biological phenomena. ML technologies have now been applied to diverse areas of tissue engineering research, including biomaterial design, scaffold fabrication, and cell/tissue modeling. Emerging ML-empowered strategies include machine-optimized polymer synthesis, predictive modeling of scaffold fabrication processes, complex analyses of structure–function relationships, and deep learning of spatialized cell phenotypes and tissue composition. The emergence of ML in tissue engineering, while relatively recent, has already enabled increasingly complex and multivariate analyses of the relationships between biological, chemical, and physical factors in driving tissue regenerative outcomes. This review highlights the novel methodologies, emerging strategies, and areas of potential growth within this rapidly evolving area of research. Machine learning (ML) has accelerated scientific discovery and augmented clinical practice across multiple fields. Now, ML has driven exciting new paradigms in tissue engineering research, including machine-optimized biomaterial design, predictive modeling of scaffold fabrication, and spatiotemporal analysis of cell and tissue systems. The emergence of ML in tissue engineering, while relatively recent, has already enabled increasingly complex analyses of the relationships between biological, chemical, and physical factors in driving tissue regenerative outcomes. This review highlights the novel methodologies, emerging strategies, and areas of potential growth within this rapidly evolving area of research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小飞侠07完成签到,获得积分10
刚刚
Albert完成签到,获得积分10
1秒前
1秒前
kchrisuzad发布了新的文献求助10
1秒前
管朋维完成签到,获得积分10
1秒前
hxb应助东擎采纳,获得10
2秒前
bodoctor2008完成签到 ,获得积分10
2秒前
阔达书雪完成签到,获得积分10
2秒前
2秒前
寒冷荧荧完成签到,获得积分10
3秒前
sheh发布了新的文献求助10
5秒前
Jiajun发布了新的文献求助10
8秒前
远方完成签到 ,获得积分10
8秒前
与木完成签到,获得积分10
10秒前
11秒前
12秒前
bias完成签到,获得积分10
13秒前
Barry完成签到,获得积分10
13秒前
moon123完成签到,获得积分10
14秒前
14秒前
王墩墩完成签到 ,获得积分10
14秒前
王侯完成签到,获得积分10
15秒前
天真大神完成签到,获得积分20
15秒前
15秒前
ddd完成签到,获得积分10
16秒前
吃鱼硕发布了新的文献求助10
16秒前
科研通AI2S应助lzc采纳,获得10
17秒前
17秒前
20秒前
英姑应助谨慎不二采纳,获得10
20秒前
abc123完成签到,获得积分10
21秒前
搜集达人应助李敏之采纳,获得10
21秒前
吃鱼硕完成签到,获得积分10
23秒前
26秒前
27秒前
巴布鲁斯发布了新的文献求助10
27秒前
ccc完成签到,获得积分10
28秒前
阿米不吃菠菜完成签到 ,获得积分10
28秒前
29秒前
科研小菜完成签到 ,获得积分10
30秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163395
求助须知:如何正确求助?哪些是违规求助? 2814263
关于积分的说明 7904141
捐赠科研通 2473792
什么是DOI,文献DOI怎么找? 1317118
科研通“疑难数据库(出版商)”最低求助积分说明 631625
版权声明 602187