Machine Learning in Tissue Engineering

脚手架 组织工程 计算机科学 生物材料 再生医学 人工智能 生化工程 纳米技术 工程类 生物医学工程 材料科学 生物 干细胞 遗传学 数据库
作者
Jason Guo,Michael Januszyk,Michael T. Longaker
出处
期刊:Tissue Engineering Part A [Mary Ann Liebert]
卷期号:29 (1-2): 2-19 被引量:8
标识
DOI:10.1089/ten.tea.2022.0128
摘要

Machine learning (ML) and artificial intelligence have accelerated scientific discovery, augmented clinical practice, and deepened fundamental understanding of many biological phenomena. ML technologies have now been applied to diverse areas of tissue engineering research, including biomaterial design, scaffold fabrication, and cell/tissue modeling. Emerging ML-empowered strategies include machine-optimized polymer synthesis, predictive modeling of scaffold fabrication processes, complex analyses of structure–function relationships, and deep learning of spatialized cell phenotypes and tissue composition. The emergence of ML in tissue engineering, while relatively recent, has already enabled increasingly complex and multivariate analyses of the relationships between biological, chemical, and physical factors in driving tissue regenerative outcomes. This review highlights the novel methodologies, emerging strategies, and areas of potential growth within this rapidly evolving area of research. Machine learning (ML) has accelerated scientific discovery and augmented clinical practice across multiple fields. Now, ML has driven exciting new paradigms in tissue engineering research, including machine-optimized biomaterial design, predictive modeling of scaffold fabrication, and spatiotemporal analysis of cell and tissue systems. The emergence of ML in tissue engineering, while relatively recent, has already enabled increasingly complex analyses of the relationships between biological, chemical, and physical factors in driving tissue regenerative outcomes. This review highlights the novel methodologies, emerging strategies, and areas of potential growth within this rapidly evolving area of research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助Nox采纳,获得10
1秒前
2秒前
帆帆发布了新的文献求助20
2秒前
3秒前
AKACrown完成签到,获得积分10
3秒前
眼睛大的老四完成签到 ,获得积分10
4秒前
飘逸平蝶发布了新的文献求助10
7秒前
枫cxf163完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
木_Q完成签到,获得积分20
9秒前
满意机器猫完成签到 ,获得积分10
10秒前
科研小菜狗完成签到 ,获得积分10
11秒前
HBY完成签到,获得积分10
11秒前
所所应助张留留采纳,获得10
11秒前
11秒前
11秒前
ZZw完成签到,获得积分20
11秒前
量子星尘发布了新的文献求助30
12秒前
uncle完成签到,获得积分10
13秒前
金蛋蛋完成签到 ,获得积分10
13秒前
zzzxiangyi完成签到,获得积分10
14秒前
zhx发布了新的文献求助10
15秒前
阔达丹秋完成签到,获得积分10
16秒前
客服完成签到 ,获得积分10
16秒前
16秒前
Nox发布了新的文献求助10
17秒前
18秒前
飘逸平蝶完成签到,获得积分10
18秒前
19秒前
balala发布了新的文献求助10
19秒前
En给En的求助进行了留言
23秒前
23秒前
俏皮晓曼完成签到,获得积分20
23秒前
24秒前
默默随阴完成签到,获得积分10
24秒前
Nox完成签到,获得积分10
25秒前
moon完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734932
求助须知:如何正确求助?哪些是违规求助? 5357333
关于积分的说明 15328116
捐赠科研通 4879418
什么是DOI,文献DOI怎么找? 2621901
邀请新用户注册赠送积分活动 1571096
关于科研通互助平台的介绍 1527906