Machine Learning in Tissue Engineering

脚手架 组织工程 计算机科学 生物材料 再生医学 人工智能 生化工程 纳米技术 工程类 生物医学工程 材料科学 生物 干细胞 遗传学 数据库
作者
Jason Guo,Michael Januszyk,Michael T. Longaker
出处
期刊:Tissue Engineering Part A [Mary Ann Liebert]
卷期号:29 (1-2): 2-19 被引量:8
标识
DOI:10.1089/ten.tea.2022.0128
摘要

Machine learning (ML) and artificial intelligence have accelerated scientific discovery, augmented clinical practice, and deepened fundamental understanding of many biological phenomena. ML technologies have now been applied to diverse areas of tissue engineering research, including biomaterial design, scaffold fabrication, and cell/tissue modeling. Emerging ML-empowered strategies include machine-optimized polymer synthesis, predictive modeling of scaffold fabrication processes, complex analyses of structure–function relationships, and deep learning of spatialized cell phenotypes and tissue composition. The emergence of ML in tissue engineering, while relatively recent, has already enabled increasingly complex and multivariate analyses of the relationships between biological, chemical, and physical factors in driving tissue regenerative outcomes. This review highlights the novel methodologies, emerging strategies, and areas of potential growth within this rapidly evolving area of research. Machine learning (ML) has accelerated scientific discovery and augmented clinical practice across multiple fields. Now, ML has driven exciting new paradigms in tissue engineering research, including machine-optimized biomaterial design, predictive modeling of scaffold fabrication, and spatiotemporal analysis of cell and tissue systems. The emergence of ML in tissue engineering, while relatively recent, has already enabled increasingly complex analyses of the relationships between biological, chemical, and physical factors in driving tissue regenerative outcomes. This review highlights the novel methodologies, emerging strategies, and areas of potential growth within this rapidly evolving area of research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助科研通管家采纳,获得10
刚刚
芋圆葡萄完成签到,获得积分10
刚刚
研友_VZG7GZ应助烟波钓徒采纳,获得10
刚刚
Zx_1993应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得30
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
刚刚
orixero应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
Zx_1993应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
1秒前
英姑应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
医学耗材完成签到 ,获得积分10
1秒前
SASI完成签到 ,获得积分10
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
HR112应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
香蕉觅云应助xxvvxx采纳,获得10
2秒前
归尘发布了新的文献求助10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
HR112应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
Sunshine应助科研通管家采纳,获得10
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340428
求助须知:如何正确求助?哪些是违规求助? 4476928
关于积分的说明 13933312
捐赠科研通 4372740
什么是DOI,文献DOI怎么找? 2402526
邀请新用户注册赠送积分活动 1395409
关于科研通互助平台的介绍 1367489