Trustworthy Federated Learning via Blockchain

计算机科学 服务器 Byzantine容错 强化学习 计算机网络 边缘设备 分布式计算 块链 边缘计算 计算机安全 人工智能 GSM演进的增强数据速率 容错 云计算 操作系统
作者
Zhanpeng Yang,Yuanming Shi,Yong Zhou,Zixin Wang,Kai Yang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 92-109 被引量:17
标识
DOI:10.1109/jiot.2022.3201117
摘要

The safety-critical scenarios of artificial intelligence (AI), such as autonomous driving, Internet of Things, smart healthcare, etc., have raised critical requirements of trustworthy AI to guarantee the privacy and security with reliable decisions. As a nascent branch for trustworthy AI, federated learning (FL) has been regarded as a promising privacy preserving framework for training a global AI model over collaborative devices. However, security challenges still exist in the FL framework, e.g., Byzantine attacks from malicious devices, and model tampering attacks from malicious server, which will degrade or destroy the accuracy of trained global AI model. In this article, we shall propose a decentralized blockchain-based FL (B-FL) architecture by using a secure global aggregation algorithm to resist malicious devices, and deploying a practical Byzantine fault tolerance consensus protocol with high effectiveness and low energy consumption among multiple edge servers to prevent model tampering from the malicious server. However, to implement B-FL system at the network edge, multiple rounds of cross-validation in blockchain consensus protocol will induce long training latency. We thus formulate a network optimization problem that jointly considers bandwidth and power allocation for the minimization of long-term average training latency consisting of progressive learning rounds. We further propose to transform the network optimization problem as a Markov decision process and leverage the deep reinforcement learning (DRL)-based algorithm to provide high system performance with low computational complexity. Simulation results demonstrate that B-FL can resist malicious attacks from edge devices and servers, and the training latency of B-FL can be significantly reduced by the DRL-based algorithm compared with the baseline algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
dajiejie完成签到 ,获得积分10
3秒前
momo完成签到,获得积分10
4秒前
有米饭没完成签到 ,获得积分10
6秒前
Nathan完成签到,获得积分10
6秒前
LSM完成签到,获得积分10
7秒前
7秒前
sunflower完成签到,获得积分10
8秒前
10秒前
10秒前
归海人英发布了新的文献求助10
10秒前
11秒前
mov完成签到,获得积分10
11秒前
完美世界应助英俊的文龙采纳,获得10
12秒前
13秒前
1011完成签到,获得积分10
14秒前
小马发布了新的文献求助10
14秒前
思源应助Ryan采纳,获得30
16秒前
16秒前
MinQi完成签到,获得积分10
17秒前
gluwater发布了新的文献求助10
19秒前
19秒前
19秒前
pengyyang完成签到,获得积分10
20秒前
纯真的冰蓝完成签到 ,获得积分10
21秒前
稳重完成签到 ,获得积分10
25秒前
pengyyang发布了新的文献求助10
25秒前
26秒前
从容安波发布了新的文献求助10
27秒前
无聊的熠彤完成签到 ,获得积分10
28秒前
Jessica发布了新的文献求助20
29秒前
一个有点长的序完成签到 ,获得积分10
30秒前
大聪明完成签到,获得积分20
31秒前
31秒前
31秒前
bkagyin应助a846204516采纳,获得10
31秒前
31秒前
Akim应助每文采纳,获得10
31秒前
Peyton Why发布了新的文献求助10
32秒前
MQ完成签到,获得积分20
33秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140111
求助须知:如何正确求助?哪些是违规求助? 2790982
关于积分的说明 7797203
捐赠科研通 2447324
什么是DOI,文献DOI怎么找? 1301841
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194