亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Trustworthy Federated Learning via Blockchain

计算机科学 服务器 Byzantine容错 强化学习 计算机网络 边缘设备 分布式计算 边缘计算 计算机安全 人工智能 GSM演进的增强数据速率 容错 云计算 操作系统
作者
Zhanpeng Yang,Yuanming Shi,Yong Zhou,Zixin Wang,Kai Yang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 92-109 被引量:59
标识
DOI:10.1109/jiot.2022.3201117
摘要

The safety-critical scenarios of artificial intelligence (AI), such as autonomous driving, Internet of Things, smart healthcare, etc., have raised critical requirements of trustworthy AI to guarantee the privacy and security with reliable decisions. As a nascent branch for trustworthy AI, federated learning (FL) has been regarded as a promising privacy preserving framework for training a global AI model over collaborative devices. However, security challenges still exist in the FL framework, e.g., Byzantine attacks from malicious devices, and model tampering attacks from malicious server, which will degrade or destroy the accuracy of trained global AI model. In this article, we shall propose a decentralized blockchain-based FL (B-FL) architecture by using a secure global aggregation algorithm to resist malicious devices, and deploying a practical Byzantine fault tolerance consensus protocol with high effectiveness and low energy consumption among multiple edge servers to prevent model tampering from the malicious server. However, to implement B-FL system at the network edge, multiple rounds of cross-validation in blockchain consensus protocol will induce long training latency. We thus formulate a network optimization problem that jointly considers bandwidth and power allocation for the minimization of long-term average training latency consisting of progressive learning rounds. We further propose to transform the network optimization problem as a Markov decision process and leverage the deep reinforcement learning (DRL)-based algorithm to provide high system performance with low computational complexity. Simulation results demonstrate that B-FL can resist malicious attacks from edge devices and servers, and the training latency of B-FL can be significantly reduced by the DRL-based algorithm compared with the baseline algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
11秒前
清明雨上发布了新的文献求助10
12秒前
jjjj完成签到,获得积分10
13秒前
andrele完成签到,获得积分10
16秒前
隐形曼青应助Shmily采纳,获得10
23秒前
yznfly应助人帅气质佳采纳,获得50
26秒前
烟花应助Shmily采纳,获得10
27秒前
28秒前
28秒前
28秒前
清明雨上完成签到,获得积分10
31秒前
31秒前
FashionBoy应助Shmily采纳,获得10
33秒前
宇文宛菡发布了新的文献求助10
36秒前
古今奇观完成签到 ,获得积分10
41秒前
45秒前
小刘很怕忙完成签到 ,获得积分10
46秒前
Hanli完成签到,获得积分10
54秒前
冬日暖阳完成签到,获得积分10
1分钟前
伶俐的迎丝完成签到 ,获得积分20
1分钟前
1分钟前
洪汉完成签到,获得积分10
1分钟前
洪汉发布了新的文献求助10
1分钟前
11mao11完成签到 ,获得积分10
1分钟前
小菊cheer完成签到,获得积分10
1分钟前
Sickey完成签到,获得积分10
1分钟前
1分钟前
清脆元冬发布了新的文献求助10
1分钟前
芊芊墨客完成签到,获得积分10
1分钟前
ayun完成签到 ,获得积分10
1分钟前
8R完成签到 ,获得积分10
1分钟前
芊芊墨完成签到,获得积分10
1分钟前
沉吟完成签到,获得积分10
1分钟前
Endless完成签到,获得积分10
1分钟前
打打应助清脆元冬采纳,获得10
1分钟前
1分钟前
今后应助芋头采纳,获得10
1分钟前
1分钟前
熊一只发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788109
求助须知:如何正确求助?哪些是违规求助? 5704481
关于积分的说明 15473229
捐赠科研通 4916268
什么是DOI,文献DOI怎么找? 2646252
邀请新用户注册赠送积分活动 1593896
关于科研通互助平台的介绍 1548301