亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Trustworthy Federated Learning via Blockchain

计算机科学 服务器 Byzantine容错 强化学习 计算机网络 边缘设备 分布式计算 边缘计算 计算机安全 人工智能 GSM演进的增强数据速率 容错 云计算 操作系统
作者
Zhanpeng Yang,Yuanming Shi,Yong Zhou,Zixin Wang,Kai Yang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 92-109 被引量:59
标识
DOI:10.1109/jiot.2022.3201117
摘要

The safety-critical scenarios of artificial intelligence (AI), such as autonomous driving, Internet of Things, smart healthcare, etc., have raised critical requirements of trustworthy AI to guarantee the privacy and security with reliable decisions. As a nascent branch for trustworthy AI, federated learning (FL) has been regarded as a promising privacy preserving framework for training a global AI model over collaborative devices. However, security challenges still exist in the FL framework, e.g., Byzantine attacks from malicious devices, and model tampering attacks from malicious server, which will degrade or destroy the accuracy of trained global AI model. In this article, we shall propose a decentralized blockchain-based FL (B-FL) architecture by using a secure global aggregation algorithm to resist malicious devices, and deploying a practical Byzantine fault tolerance consensus protocol with high effectiveness and low energy consumption among multiple edge servers to prevent model tampering from the malicious server. However, to implement B-FL system at the network edge, multiple rounds of cross-validation in blockchain consensus protocol will induce long training latency. We thus formulate a network optimization problem that jointly considers bandwidth and power allocation for the minimization of long-term average training latency consisting of progressive learning rounds. We further propose to transform the network optimization problem as a Markov decision process and leverage the deep reinforcement learning (DRL)-based algorithm to provide high system performance with low computational complexity. Simulation results demonstrate that B-FL can resist malicious attacks from edge devices and servers, and the training latency of B-FL can be significantly reduced by the DRL-based algorithm compared with the baseline algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
饼干肥熊完成签到 ,获得积分10
2秒前
morena应助科研通管家采纳,获得20
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
leslie发布了新的文献求助10
5秒前
今后应助123456采纳,获得10
8秒前
rgb001完成签到,获得积分10
9秒前
刘小源完成签到 ,获得积分10
10秒前
10秒前
bbbao完成签到,获得积分10
12秒前
JingjingYao完成签到,获得积分10
14秒前
GY97应助郑麻采纳,获得10
14秒前
Xielin完成签到,获得积分10
17秒前
昏睡的乌冬面完成签到 ,获得积分10
18秒前
21秒前
迪迪发布了新的文献求助10
25秒前
on关闭了on文献求助
26秒前
科目三应助lllyjs采纳,获得10
30秒前
捉迷藏完成签到,获得积分0
34秒前
35秒前
36秒前
39秒前
Criminology34应助果糖不加糖采纳,获得10
43秒前
香蕉觅云应助迪迪采纳,获得30
47秒前
zhangjw完成签到 ,获得积分10
49秒前
52秒前
冷酷哈密瓜完成签到,获得积分10
55秒前
56秒前
56秒前
大个应助淡定的乐安采纳,获得10
59秒前
孤蚀月发布了新的文献求助10
59秒前
热爱科研的小白鼠完成签到,获得积分10
1分钟前
1分钟前
bkagyin应助洞两采纳,获得10
1分钟前
yangjian发布了新的文献求助10
1分钟前
adkdad完成签到 ,获得积分10
1分钟前
科研通AI6应助sadascaqwqw采纳,获得10
1分钟前
yangjian完成签到,获得积分10
1分钟前
1分钟前
孤蚀月完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590329
求助须知:如何正确求助?哪些是违规求助? 4674705
关于积分的说明 14795072
捐赠科研通 4631262
什么是DOI,文献DOI怎么找? 2532677
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468617