Trustworthy Federated Learning via Blockchain

计算机科学 服务器 Byzantine容错 强化学习 计算机网络 边缘设备 分布式计算 边缘计算 计算机安全 人工智能 GSM演进的增强数据速率 容错 云计算 操作系统
作者
Zhanpeng Yang,Yuanming Shi,Yong Zhou,Zixin Wang,Kai Yang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 92-109 被引量:59
标识
DOI:10.1109/jiot.2022.3201117
摘要

The safety-critical scenarios of artificial intelligence (AI), such as autonomous driving, Internet of Things, smart healthcare, etc., have raised critical requirements of trustworthy AI to guarantee the privacy and security with reliable decisions. As a nascent branch for trustworthy AI, federated learning (FL) has been regarded as a promising privacy preserving framework for training a global AI model over collaborative devices. However, security challenges still exist in the FL framework, e.g., Byzantine attacks from malicious devices, and model tampering attacks from malicious server, which will degrade or destroy the accuracy of trained global AI model. In this article, we shall propose a decentralized blockchain-based FL (B-FL) architecture by using a secure global aggregation algorithm to resist malicious devices, and deploying a practical Byzantine fault tolerance consensus protocol with high effectiveness and low energy consumption among multiple edge servers to prevent model tampering from the malicious server. However, to implement B-FL system at the network edge, multiple rounds of cross-validation in blockchain consensus protocol will induce long training latency. We thus formulate a network optimization problem that jointly considers bandwidth and power allocation for the minimization of long-term average training latency consisting of progressive learning rounds. We further propose to transform the network optimization problem as a Markov decision process and leverage the deep reinforcement learning (DRL)-based algorithm to provide high system performance with low computational complexity. Simulation results demonstrate that B-FL can resist malicious attacks from edge devices and servers, and the training latency of B-FL can be significantly reduced by the DRL-based algorithm compared with the baseline algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦鱼完成签到,获得积分10
1秒前
1秒前
苏苏苏完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
苏苏苏发布了新的文献求助10
5秒前
5秒前
小马甲应助任伟超采纳,获得10
5秒前
5秒前
早日毕业完成签到 ,获得积分10
6秒前
6秒前
6秒前
jjj完成签到,获得积分20
7秒前
清萝完成签到 ,获得积分10
8秒前
十七完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
啦啦鱼发布了新的文献求助10
10秒前
10秒前
mqq发布了新的文献求助10
11秒前
yi发布了新的文献求助10
12秒前
pmk完成签到,获得积分10
12秒前
WENc完成签到,获得积分10
13秒前
田様应助楚天娇采纳,获得10
14秒前
思源应助哭泣的俊驰采纳,获得10
15秒前
Queena发布了新的文献求助10
15秒前
十七发布了新的文献求助10
15秒前
樊珩发布了新的文献求助10
15秒前
重要芯完成签到 ,获得积分10
16秒前
17秒前
研友_VZG7GZ应助yi采纳,获得10
17秒前
013完成签到,获得积分10
17秒前
共享精神应助暴富小羊采纳,获得10
17秒前
18秒前
包容聋五发布了新的文献求助10
22秒前
共享精神应助mqq采纳,获得10
23秒前
XJ完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951053
求助须知:如何正确求助?哪些是违规求助? 3496470
关于积分的说明 11082221
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801030