Contribution of an artificial intelligence deep-learning reconstruction algorithm for dose optimization in lumbar spine CT examination: A phantom study

医学 成像体模 核医学 算法 图像质量 迭代重建 图像噪声 人工智能 放射科 数学 计算机科学 图像(数学)
作者
Joël Greffier,Julien Frandon,Quentin Durand,Tarek Kammoun,Maeliss Loisy,Jean-Paul Bérégi,Djamel Dabli
出处
期刊:Diagnostic and interventional imaging [Elsevier BV]
卷期号:104 (2): 76-83 被引量:18
标识
DOI:10.1016/j.diii.2022.08.004
摘要

The purpose of this study was to assess the impact of the new artificial intelligence deep-learning reconstruction (AI-DLR) algorithm on image quality and radiation dose compared with iterative reconstruction algorithm in lumbar spine computed tomography (CT) examination.Acquisitions on phantoms were performed using a tube current modulation system for four DoseRight Indexes (DRI) (i.e., 26/23/20/15). Raw data were reconstructed using the Level 4 of iDose4 (i4) and three levels of AI-DLR (Smoother/Smooth/Standard) with a bone reconstruction kernel. The Noise power spectrum (NPS), task-based transfer function (TTF) and detectability index (d') were computed (d' modeled detection of a lytic and a sclerotic bone lesions). Image quality was subjectively assessed on an anthropomorphic phantom by two radiologists.The Noise magnitude was lower with AI-DLR than i4 and decreased from Standard to Smooth (-31 ± 0.1 [SD]%) and Smooth to Smoother (-48 ± 0.1 [SD]%). The average NPS spatial frequency was similar with i4 (0.43 ± 0.01 [SD] mm-1) and Standard (0.42 ± 0.01 [SD] mm-1) but decreased from Standard to Smoother (0.36 ± 0.01 [SD] mm-1). TTF values at 50% decreased as the dose decreased but were similar with i4 and all AI-DLR levels. For both simulated lesions, d' values increased from Standard to Smoother levels. Higher detectabilities were found with a DRI at 15 and Smooth and Smoother levels than with a DRI at 26 and i4. The images obtained with these dose and AI-DLR levels were rated satisfactory for clinical use by the radiologists.Using Smooth and Smoother levels with CT allows a significant dose reduction (up to 72%) with a high detectability of lytic and sclerotic bone lesions and a clinical overall image quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助扶桑采纳,获得10
刚刚
刚刚
852应助小欢爱学习采纳,获得10
1秒前
biubiubiu完成签到,获得积分10
2秒前
太渊完成签到 ,获得积分10
4秒前
4秒前
李某某完成签到,获得积分10
5秒前
瞅我这一脑门汗完成签到,获得积分10
6秒前
雨柏完成签到 ,获得积分10
8秒前
11发布了新的文献求助20
8秒前
9秒前
9秒前
10秒前
完美世界应助内向怀曼采纳,获得10
11秒前
猪猪hero应助wpf7848采纳,获得10
11秒前
chen_hebo发布了新的文献求助10
11秒前
MYMELODY完成签到,获得积分10
13秒前
devil完成签到,获得积分10
14秒前
汉堡包应助22222采纳,获得10
14秒前
mm发布了新的文献求助10
15秒前
dadadaxia发布了新的文献求助10
15秒前
16秒前
土豆丝完成签到 ,获得积分10
17秒前
seven完成签到,获得积分10
18秒前
18秒前
CA发布了新的文献求助10
19秒前
旺旺小小su完成签到,获得积分10
19秒前
哎呀我去完成签到,获得积分10
20秒前
22秒前
22秒前
wanghuifen123发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
24秒前
菜菜带带完成签到,获得积分10
25秒前
25秒前
ylbb发布了新的文献求助10
26秒前
27秒前
27秒前
PEAR发布了新的文献求助10
29秒前
29秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956119
求助须知:如何正确求助?哪些是违规求助? 3502336
关于积分的说明 11107217
捐赠科研通 3232912
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870422
科研通“疑难数据库(出版商)”最低求助积分说明 802019