Adaptive Particle Swarm Optimizer Combining Hierarchical Learning With Variable Population

粒子群优化 人口 群体行为 水准点(测量) 计算机科学 变量(数学) 数学优化 多群优化 等级制度 元启发式 群体智能 人工智能 数学 算法 数学分析 人口学 社会学 大地测量学 经济 市场经济 地理
作者
Huan Liu,Junqi Zhang,MengChu Zhou
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:53 (3): 1397-1407 被引量:9
标识
DOI:10.1109/tsmc.2022.3199497
摘要

Particle swarm optimizer (PSO) is an optimization technique that has been applied to solve various problems. In its variants, hierarchical learning and variable population are two commonly used learning strategies. The former is used to employ more potentially good particles to lead the swarm, which is very effective in the early search phase. However, in the later search phase, such mechanism impedes PSO’s convergence. This work proposes an adaptive particle swarm optimizer combining hierarchical learning with variable population (PSO-HV), in which a heap-based hierarchy is first proposed to organize particles to hierarchically learn from the ones with better fitness in the same and upper levels. The levels of particles are determined and updated according to their current fitness in each iteration. Meanwhile, an adaptive variable population strategy is introduced and eliminates redundant particles based on the population’s evolution state. In this way, the swarm is more explorative upon the hierarchical structure and improves its exploitation capability due to the variable population mechanism. Ten state-of-the-art PSO contenders, including two hierarchical ones and two variable population-based ones, are compared with the proposed method on 57 benchmark functions and the experimental results verify its effectiveness and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
18岁中二少年完成签到,获得积分10
1秒前
ozz完成签到,获得积分10
1秒前
咻咻发布了新的文献求助10
2秒前
zhumeinv完成签到 ,获得积分10
2秒前
橙子发布了新的文献求助10
2秒前
Limerencia完成签到,获得积分10
3秒前
朱伶可发布了新的文献求助10
4秒前
5秒前
6秒前
jerry完成签到,获得积分10
6秒前
6秒前
无花果应助简单的诗槐采纳,获得10
6秒前
7秒前
菠萝派发布了新的文献求助10
8秒前
shuaige发布了新的文献求助10
8秒前
hjy完成签到,获得积分10
9秒前
9秒前
YXYWZMSZ发布了新的文献求助10
11秒前
11秒前
香蕉觅云应助IceT采纳,获得10
11秒前
13秒前
13秒前
Lxk发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
Emma发布了新的文献求助10
16秒前
细腻千秋完成签到 ,获得积分10
16秒前
16秒前
16秒前
林见清发布了新的文献求助10
17秒前
19秒前
19秒前
19秒前
19秒前
奋斗伊发布了新的文献求助10
20秒前
大力荷花发布了新的文献求助10
20秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956069
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107074
捐赠科研通 3232847
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870396
科研通“疑难数据库(出版商)”最低求助积分说明 802019