Resampling-based cost loss attention network for explainable imbalanced diabetic retinopathy grading

计算机科学 人工智能 重采样 糖尿病性视网膜病变 模式识别(心理学) 分级(工程) 人工神经网络 生物识别 机器学习 医学 工程类 内分泌学 土木工程 糖尿病
作者
Haiyan Li,Xiaofang Dong,Wei Shen,Fuhua Ge,Hongsong Li
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:149: 105970-105970 被引量:10
标识
DOI:10.1016/j.compbiomed.2022.105970
摘要

Diabetic retinopathy (DR) is currently considered to be one of the most common diseases that cause blindness. However, DR grading methods are still challenged by the presence of imbalanced class distributions, small lesions, low accuracy of small sample classes and poor explainability. To address these issues, a resampling-based cost loss attention network for explainable imbalanced diabetic retinopathy grading is proposed. First, the progressively-balanced resampling strategy is put forward to create a balanced training data by mixing the two sets of samples obtained from instance-based sampling and class-based sampling. Subsequently, a neuron and normalized channel-spatial attention module (Neu-NCSAM) is designed to learn the global features with 3-D weights and a weight sparsity penalty is applied to the attention module to suppress irrelevant channels or pixels, thereby capturing detailed small lesion information. Thereafter, a weighted loss function of the Cost-Sensitive (CS) regularization and Gaussian label smoothing loss, called cost loss, is proposed to intelligently penalize the incorrect predictions and thus to improve the grading accuracy of small sample classes. Finally, the Gradient-weighted Class Activation Mapping (Grad-CAM) is performed to acquire the localization map of the questionable lesions in order to visually interpret and understand the effect of our model. Comprehensive experiments are carried out on two public datasets, and the subjective and objective results demonstrate that the proposed network outperforms the state-of-the-art methods and achieves the best DR grading results with 83.46%, 60.44%, 65.18%, 63.69% and 92.26% for Kappa, BACC, MCC, F1 and mAUC, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
mbxjsy发布了新的文献求助10
1秒前
隐形曼青应助典雅的俊驰采纳,获得10
1秒前
1秒前
TTT完成签到,获得积分10
1秒前
Biu忒佛完成签到,获得积分10
1秒前
煎饼果子发布了新的文献求助10
2秒前
木偶人完成签到,获得积分10
3秒前
Jasper应助风中飞绿采纳,获得30
3秒前
3秒前
hanzhangjian完成签到,获得积分20
3秒前
嗯哼发布了新的文献求助10
4秒前
在水一方应助科研圣体采纳,获得10
4秒前
LILYpig完成签到 ,获得积分10
5秒前
Owen应助小yang采纳,获得10
5秒前
6秒前
小蘑菇应助LD采纳,获得10
7秒前
Lucas应助jjy采纳,获得10
8秒前
ZZQ驳回了zhangyu应助
8秒前
大模型应助当时明月在采纳,获得10
8秒前
紫了葡萄发布了新的文献求助10
8秒前
纯真冰蝶发布了新的文献求助10
10秒前
10秒前
13秒前
Theprisoners举报小白求助涉嫌违规
13秒前
13秒前
13秒前
Ecokarster应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
14秒前
打打应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
木心应助科研通管家采纳,获得10
14秒前
木心应助科研通管家采纳,获得10
14秒前
彭于彦祖应助科研通管家采纳,获得20
14秒前
Liufgui应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
14秒前
英姑应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992840
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263330
捐赠科研通 3273416
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809619