亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Resampling-based cost loss attention network for explainable imbalanced diabetic retinopathy grading

计算机科学 人工智能 重采样 糖尿病性视网膜病变 模式识别(心理学) 分级(工程) 人工神经网络 生物识别 机器学习 医学 工程类 内分泌学 土木工程 糖尿病
作者
Haiyan Li,Xiaofang Dong,Wei Shen,Fuhua Ge,Hongsong Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:149: 105970-105970 被引量:10
标识
DOI:10.1016/j.compbiomed.2022.105970
摘要

Diabetic retinopathy (DR) is currently considered to be one of the most common diseases that cause blindness. However, DR grading methods are still challenged by the presence of imbalanced class distributions, small lesions, low accuracy of small sample classes and poor explainability. To address these issues, a resampling-based cost loss attention network for explainable imbalanced diabetic retinopathy grading is proposed. First, the progressively-balanced resampling strategy is put forward to create a balanced training data by mixing the two sets of samples obtained from instance-based sampling and class-based sampling. Subsequently, a neuron and normalized channel-spatial attention module (Neu-NCSAM) is designed to learn the global features with 3-D weights and a weight sparsity penalty is applied to the attention module to suppress irrelevant channels or pixels, thereby capturing detailed small lesion information. Thereafter, a weighted loss function of the Cost-Sensitive (CS) regularization and Gaussian label smoothing loss, called cost loss, is proposed to intelligently penalize the incorrect predictions and thus to improve the grading accuracy of small sample classes. Finally, the Gradient-weighted Class Activation Mapping (Grad-CAM) is performed to acquire the localization map of the questionable lesions in order to visually interpret and understand the effect of our model. Comprehensive experiments are carried out on two public datasets, and the subjective and objective results demonstrate that the proposed network outperforms the state-of-the-art methods and achieves the best DR grading results with 83.46%, 60.44%, 65.18%, 63.69% and 92.26% for Kappa, BACC, MCC, F1 and mAUC, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mengyuhuan完成签到 ,获得积分0
2秒前
白华苍松完成签到,获得积分10
9秒前
10秒前
白华苍松发布了新的文献求助10
13秒前
15秒前
Marciu33发布了新的文献求助10
16秒前
Suraim完成签到,获得积分10
20秒前
38秒前
守墓人完成签到 ,获得积分10
39秒前
huo应助能干的问筠采纳,获得10
44秒前
50秒前
不周完成签到,获得积分10
58秒前
59秒前
1分钟前
1分钟前
Omni发布了新的文献求助10
1分钟前
1分钟前
1分钟前
天天快乐应助Wilson采纳,获得10
2分钟前
SALTwater7完成签到,获得积分20
2分钟前
sz完成签到 ,获得积分20
2分钟前
wanci应助Wilson采纳,获得10
2分钟前
自由一一给自由一一的求助进行了留言
2分钟前
能干的问筠完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助温暖砖头采纳,获得10
3分钟前
3分钟前
天天快乐应助西余采纳,获得10
3分钟前
3分钟前
3分钟前
Karol发布了新的文献求助200
3分钟前
3分钟前
西余发布了新的文献求助10
3分钟前
科研剧中人完成签到,获得积分10
4分钟前
4分钟前
嘉心糖举报slidy求助涉嫌违规
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303216
求助须知:如何正确求助?哪些是违规求助? 2937578
关于积分的说明 8482424
捐赠科研通 2611452
什么是DOI,文献DOI怎么找? 1425877
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 647005