Resampling-based cost loss attention network for explainable imbalanced diabetic retinopathy grading

计算机科学 人工智能 重采样 糖尿病性视网膜病变 模式识别(心理学) 分级(工程) 人工神经网络 生物识别 机器学习 医学 工程类 内分泌学 土木工程 糖尿病
作者
Haiyan Li,Xiaofang Dong,Wei Shen,Fuhua Ge,Hongsong Li
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:149: 105970-105970 被引量:10
标识
DOI:10.1016/j.compbiomed.2022.105970
摘要

Diabetic retinopathy (DR) is currently considered to be one of the most common diseases that cause blindness. However, DR grading methods are still challenged by the presence of imbalanced class distributions, small lesions, low accuracy of small sample classes and poor explainability. To address these issues, a resampling-based cost loss attention network for explainable imbalanced diabetic retinopathy grading is proposed. First, the progressively-balanced resampling strategy is put forward to create a balanced training data by mixing the two sets of samples obtained from instance-based sampling and class-based sampling. Subsequently, a neuron and normalized channel-spatial attention module (Neu-NCSAM) is designed to learn the global features with 3-D weights and a weight sparsity penalty is applied to the attention module to suppress irrelevant channels or pixels, thereby capturing detailed small lesion information. Thereafter, a weighted loss function of the Cost-Sensitive (CS) regularization and Gaussian label smoothing loss, called cost loss, is proposed to intelligently penalize the incorrect predictions and thus to improve the grading accuracy of small sample classes. Finally, the Gradient-weighted Class Activation Mapping (Grad-CAM) is performed to acquire the localization map of the questionable lesions in order to visually interpret and understand the effect of our model. Comprehensive experiments are carried out on two public datasets, and the subjective and objective results demonstrate that the proposed network outperforms the state-of-the-art methods and achieves the best DR grading results with 83.46%, 60.44%, 65.18%, 63.69% and 92.26% for Kappa, BACC, MCC, F1 and mAUC, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小洲王先生完成签到,获得积分10
1秒前
1秒前
dd完成签到,获得积分10
1秒前
1秒前
2秒前
CCL应助kk2024采纳,获得50
2秒前
wjs0406完成签到,获得积分10
2秒前
自爱悠然发布了新的文献求助10
2秒前
贺雪完成签到,获得积分10
3秒前
3秒前
玉yu发布了新的文献求助10
4秒前
深情秋刀鱼完成签到,获得积分10
4秒前
星辰大海应助冷酷尔琴采纳,获得10
4秒前
4秒前
4秒前
隐形的大有完成签到,获得积分10
5秒前
浩浩大人发布了新的文献求助10
5秒前
buno应助圈圈采纳,获得10
5秒前
6秒前
隐形曼青应助Bo采纳,获得10
6秒前
西宁阿应助啵乐乐采纳,获得10
6秒前
6秒前
阿仔爱学习完成签到,获得积分10
6秒前
为喵驾车的月亮完成签到,获得积分20
7秒前
7秒前
membrane应助Mon_zh采纳,获得20
7秒前
8秒前
8秒前
hhy发布了新的文献求助10
8秒前
故意的傲玉应助结实煎饼采纳,获得200
9秒前
乐观的一一完成签到,获得积分10
9秒前
zwzw1314完成签到,获得积分10
9秒前
001发布了新的文献求助10
10秒前
FFFFFFF应助平淡南霜采纳,获得10
10秒前
Mottri发布了新的文献求助10
10秒前
11秒前
yangyang发布了新的文献求助10
11秒前
冷酷尔琴完成签到,获得积分10
11秒前
科研通AI5应助aaaaaa采纳,获得10
11秒前
顾矜应助清脆的台灯采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740