Transformer-based deep learning model and video dataset for unsafe action identification in construction projects

变压器 剪辑 计算机科学 深度学习 人工智能 实时计算 机器学习 数据挖掘 工程类 电气工程 电压
作者
Meng Yang,Chengke Wu,Yuanjun Guo,Rui Jiang,Feixiang Zhou,Jianlin Zhang,Zhile Yang
出处
期刊:Automation in Construction [Elsevier]
卷期号:146: 104703-104703 被引量:22
标识
DOI:10.1016/j.autcon.2022.104703
摘要

A large proportion of construction accidents are caused by unintentional and unsafe actions and behaviors. It is of significant difficulties and ineffectiveness to monitor unsafe behaviors using conventional manual supervision due to the complex and dynamic working conditions on construction sites. Recently, surveillance videos and computer vision (CV) techniques have been increasingly adopted to automatically identify risky behaviors. However, the challenge remains that spatial and temporal features in video clips cannot be effectively captured and fused by current CV models. To address this challenge, this paper describes a deep learning model named Spatial Temporal Relation Transformer (STR-Transformer), where spatial and temporal features of work behaviors are simultaneously extracted in paralleling video streams and then fused by a specially designed module. To verify the effectiveness of the STR-Transformer, a customized dataset is developed, including seven categories of construction worker behaviors and 1595 video clips. In numerical experiments and case studies, the STR-Transformer achieves an average precision of 88.7%, 4.0% higher than the baseline model. The STR-Transformer enables more accurate and reliable automatic safety surveillance on construction projects, and is expected to reduce accident rates and management costs. Moreover, the performance of STR-Transformer relies on efficient feature integration, which may inspire future studies to identify, extract, and fuse richer features when applying CV-based deep learning models in construction management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的绯完成签到,获得积分10
1秒前
斯文败类应助欧阳浩楠采纳,获得10
2秒前
666发布了新的文献求助10
2秒前
2秒前
Eason完成签到,获得积分10
2秒前
3秒前
CipherSage应助MCCCCC_6采纳,获得10
3秒前
4秒前
Lucas应助善良的藏花采纳,获得10
5秒前
5秒前
卢建烨完成签到,获得积分10
5秒前
NexusExplorer应助莫言采纳,获得10
6秒前
ChenJiahao完成签到,获得积分10
7秒前
JamesPei应助Mani采纳,获得10
8秒前
华仔应助zzzzza采纳,获得10
8秒前
赘婿应助怕孤独的如凡采纳,获得10
8秒前
杨杨发布了新的文献求助10
8秒前
龚成明发布了新的文献求助10
9秒前
蛋挞小包完成签到,获得积分10
9秒前
9秒前
冷酷的傲之完成签到,获得积分10
9秒前
朱啊朱完成签到,获得积分10
9秒前
10秒前
10秒前
哈哈哈发布了新的文献求助10
11秒前
无奈的晴发布了新的文献求助10
11秒前
赘婿应助认真丹秋采纳,获得10
12秒前
13秒前
14秒前
14秒前
情怀应助syy666采纳,获得30
15秒前
15秒前
Novermber发布了新的文献求助10
15秒前
ycjdoc发布了新的文献求助10
16秒前
18秒前
CodeCraft应助兵临城下采纳,获得10
19秒前
19秒前
莫言发布了新的文献求助10
19秒前
66HUGE发布了新的文献求助10
20秒前
Lucas应助王东升采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515890
求助须知:如何正确求助?哪些是违规求助? 3098083
关于积分的说明 9237912
捐赠科研通 2793061
什么是DOI,文献DOI怎么找? 1532791
邀请新用户注册赠送积分活动 712304
科研通“疑难数据库(出版商)”最低求助积分说明 707256