Influence maximization through exploring structural information

可扩展性 桥(图论) 群落结构 最大化 计算机科学 数据挖掘 数学 算法 数学优化 统计 医学 数据库 内科学
作者
Qi Li,Le Cheng,Wei Wang,Xianghua Li,Shudong Li,Peican Zhu
出处
期刊:Applied Mathematics and Computation [Elsevier]
卷期号:442: 127721-127721 被引量:22
标识
DOI:10.1016/j.amc.2022.127721
摘要

Influence maximization (IM) is a widely investigated issue in the study of social networks because of its potential commercial and social value. The purpose of IM is to identify a group of influential nodes that will spread information to other nodes in a network while simultaneously maximizing the number of nodes that are ultimately influenced. Traditional IM methods have different limitations, such as limited scalability to address large-scale networks and the neglect of community structural information. Here, we propose a novel influence maximization approach, i.e., the layered gravity bridge algorithm (LGB), to address the IM problem, which emphasizes the local structural information of networks and combines community detection algorithms with an improved gravity model. With the proposed LGB, a community detection method is used to derive the communities, and then the bridge nodes are found, which can be regarded as possible candidate seeds. Later, communities are merged into larger communities according to our proposed algorithm, and new bridge nodes are determined. Finally, all candidate seed nodes are sorted through an improved gravity model to determine the final seed nodes. The algorithm fully explores the network structural information provided by the communities, thereby making it superior to the current algorithms in terms of the number of ultimately infected nodes. Furthermore, our proposed algorithm possesses the potential to alleviate the influence overlap effect of seed nodes. To verify the effect of our approach, the classical SIR model is adopted to propagate information with the selected seed nodes, while experiments are performed on several practical datasets. As indicated by the obtained results, the performance of our proposed algorithm outperforms existing ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Green完成签到,获得积分10
刚刚
科研通AI2S应助10采纳,获得10
刚刚
myf发布了新的文献求助10
1秒前
nnn25发布了新的文献求助10
1秒前
大模型应助晓晓雪采纳,获得10
2秒前
more完成签到,获得积分10
2秒前
酷酷的涵蕾完成签到 ,获得积分10
2秒前
项阑悦完成签到,获得积分10
3秒前
3秒前
源气满满完成签到,获得积分20
3秒前
远_09完成签到 ,获得积分10
3秒前
3秒前
Akim应助易安采纳,获得10
4秒前
开开心心的开心完成签到,获得积分10
5秒前
ding应助大白采纳,获得10
5秒前
dktrrrr完成签到,获得积分10
5秒前
milkcoffe完成签到,获得积分10
6秒前
XUGANG完成签到,获得积分20
7秒前
科研通AI2S应助huhu采纳,获得10
7秒前
xinyi完成签到,获得积分10
7秒前
糖糖糖完成签到,获得积分10
7秒前
RRRRRRR发布了新的文献求助10
8秒前
Jack完成签到,获得积分10
8秒前
9秒前
关关完成签到,获得积分10
9秒前
chiyudoubao完成签到,获得积分10
9秒前
海豚完成签到,获得积分10
9秒前
10秒前
10秒前
乐乐应助Wen采纳,获得10
11秒前
大模型应助zhangpeng采纳,获得10
11秒前
lozhuo完成签到,获得积分10
11秒前
joysa完成签到,获得积分10
11秒前
傲娇的咖啡豆完成签到,获得积分10
12秒前
nnn25完成签到,获得积分10
12秒前
斯文败类应助乐乐采纳,获得10
12秒前
绿豆炒青椒完成签到,获得积分10
13秒前
哎嘿应助憨豆豆采纳,获得10
14秒前
37星河75完成签到,获得积分20
14秒前
xjp发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158960
求助须知:如何正确求助?哪些是违规求助? 2810082
关于积分的说明 7886047
捐赠科研通 2468944
什么是DOI,文献DOI怎么找? 1314470
科研通“疑难数据库(出版商)”最低求助积分说明 630632
版权声明 602012