Influence maximization through exploring structural information

可扩展性 桥(图论) 群落结构 最大化 计算机科学 数据挖掘 数学 算法 数学优化 统计 医学 数据库 内科学
作者
Qi Li,Le Cheng,Wei Wang,Xianghua Li,Shudong Li,Peican Zhu
出处
期刊:Applied Mathematics and Computation [Elsevier BV]
卷期号:442: 127721-127721 被引量:29
标识
DOI:10.1016/j.amc.2022.127721
摘要

Influence maximization (IM) is a widely investigated issue in the study of social networks because of its potential commercial and social value. The purpose of IM is to identify a group of influential nodes that will spread information to other nodes in a network while simultaneously maximizing the number of nodes that are ultimately influenced. Traditional IM methods have different limitations, such as limited scalability to address large-scale networks and the neglect of community structural information. Here, we propose a novel influence maximization approach, i.e., the layered gravity bridge algorithm (LGB), to address the IM problem, which emphasizes the local structural information of networks and combines community detection algorithms with an improved gravity model. With the proposed LGB, a community detection method is used to derive the communities, and then the bridge nodes are found, which can be regarded as possible candidate seeds. Later, communities are merged into larger communities according to our proposed algorithm, and new bridge nodes are determined. Finally, all candidate seed nodes are sorted through an improved gravity model to determine the final seed nodes. The algorithm fully explores the network structural information provided by the communities, thereby making it superior to the current algorithms in terms of the number of ultimately infected nodes. Furthermore, our proposed algorithm possesses the potential to alleviate the influence overlap effect of seed nodes. To verify the effect of our approach, the classical SIR model is adopted to propagate information with the selected seed nodes, while experiments are performed on several practical datasets. As indicated by the obtained results, the performance of our proposed algorithm outperforms existing ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包容的映天完成签到 ,获得积分10
刚刚
任十三完成签到 ,获得积分10
1秒前
一只滦完成签到,获得积分10
1秒前
潘票完成签到 ,获得积分10
3秒前
帅气的藏鸟完成签到,获得积分10
3秒前
迷你的雪碧完成签到,获得积分10
4秒前
米博士完成签到,获得积分10
4秒前
今后应助junru采纳,获得30
7秒前
占听兰完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
10秒前
头号玩家完成签到,获得积分10
10秒前
小海完成签到,获得积分10
13秒前
13秒前
14秒前
八八九九九1完成签到,获得积分10
14秒前
15秒前
15秒前
doctor_loong完成签到 ,获得积分10
15秒前
CLTTTt完成签到,获得积分10
17秒前
miku完成签到 ,获得积分10
18秒前
养乐多完成签到,获得积分10
19秒前
Leach完成签到 ,获得积分10
20秒前
田様应助胖小羊采纳,获得10
22秒前
wxxz完成签到,获得积分10
22秒前
汤成莉完成签到 ,获得积分10
26秒前
大个应助花开的石头采纳,获得10
26秒前
量子星尘发布了新的文献求助10
27秒前
大力水手完成签到,获得积分0
32秒前
BlueKitty完成签到,获得积分10
36秒前
1z完成签到,获得积分10
37秒前
eyu完成签到,获得积分10
37秒前
jw完成签到,获得积分10
38秒前
量子星尘发布了新的文献求助10
41秒前
Han完成签到,获得积分10
42秒前
chenwang发布了新的文献求助20
42秒前
44秒前
46秒前
jixuchance完成签到,获得积分10
47秒前
HK完成签到 ,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952372
求助须知:如何正确求助?哪些是违规求助? 4215135
关于积分的说明 13111370
捐赠科研通 3997082
什么是DOI,文献DOI怎么找? 2187751
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115740