Influence maximization through exploring structural information

可扩展性 桥(图论) 群落结构 最大化 计算机科学 数据挖掘 数学 算法 数学优化 统计 医学 数据库 内科学
作者
Qi Li,Le Cheng,Wei Wang,Xianghua Li,Shudong Li,Peican Zhu
出处
期刊:Applied Mathematics and Computation [Elsevier BV]
卷期号:442: 127721-127721 被引量:22
标识
DOI:10.1016/j.amc.2022.127721
摘要

Influence maximization (IM) is a widely investigated issue in the study of social networks because of its potential commercial and social value. The purpose of IM is to identify a group of influential nodes that will spread information to other nodes in a network while simultaneously maximizing the number of nodes that are ultimately influenced. Traditional IM methods have different limitations, such as limited scalability to address large-scale networks and the neglect of community structural information. Here, we propose a novel influence maximization approach, i.e., the layered gravity bridge algorithm (LGB), to address the IM problem, which emphasizes the local structural information of networks and combines community detection algorithms with an improved gravity model. With the proposed LGB, a community detection method is used to derive the communities, and then the bridge nodes are found, which can be regarded as possible candidate seeds. Later, communities are merged into larger communities according to our proposed algorithm, and new bridge nodes are determined. Finally, all candidate seed nodes are sorted through an improved gravity model to determine the final seed nodes. The algorithm fully explores the network structural information provided by the communities, thereby making it superior to the current algorithms in terms of the number of ultimately infected nodes. Furthermore, our proposed algorithm possesses the potential to alleviate the influence overlap effect of seed nodes. To verify the effect of our approach, the classical SIR model is adopted to propagate information with the selected seed nodes, while experiments are performed on several practical datasets. As indicated by the obtained results, the performance of our proposed algorithm outperforms existing ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Phuong完成签到,获得积分10
刚刚
ok123完成签到 ,获得积分10
1秒前
苏小北完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
缓慢海亦发布了新的文献求助10
2秒前
3秒前
科研麻瓜完成签到,获得积分20
3秒前
4秒前
开心人达发布了新的文献求助10
5秒前
小雨完成签到,获得积分10
5秒前
燕燕于飞发布了新的文献求助30
5秒前
ayuelei发布了新的文献求助10
6秒前
完美世界应助灵76采纳,获得10
6秒前
碧蓝的青荷完成签到,获得积分20
8秒前
9秒前
完美世界应助飞飞采纳,获得10
10秒前
10秒前
11秒前
11秒前
利乐完成签到,获得积分10
12秒前
小雨发布了新的文献求助10
12秒前
yiyi037118发布了新的文献求助10
13秒前
清新的宛丝完成签到,获得积分10
13秒前
14秒前
柯一一应助燕燕于飞采纳,获得10
14秒前
orixero应助稀里糊涂图采纳,获得20
15秒前
YUMI发布了新的文献求助10
15秒前
damai完成签到,获得积分10
15秒前
15秒前
15秒前
wuwu完成签到,获得积分10
16秒前
风中早晨完成签到,获得积分10
16秒前
罗某人发布了新的文献求助10
16秒前
chaobada完成签到,获得积分10
16秒前
17秒前
17秒前
斤斤发布了新的文献求助10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969513
求助须知:如何正确求助?哪些是违规求助? 3514327
关于积分的说明 11173617
捐赠科研通 3249672
什么是DOI,文献DOI怎么找? 1794973
邀请新用户注册赠送积分活动 875537
科研通“疑难数据库(出版商)”最低求助积分说明 804836