亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Influence maximization through exploring structural information

可扩展性 桥(图论) 群落结构 最大化 计算机科学 数据挖掘 数学 算法 数学优化 统计 医学 数据库 内科学
作者
Qi Li,Le Cheng,Wei Wang,Xianghua Li,Shudong Li,Peican Zhu
出处
期刊:Applied Mathematics and Computation [Elsevier]
卷期号:442: 127721-127721 被引量:29
标识
DOI:10.1016/j.amc.2022.127721
摘要

Influence maximization (IM) is a widely investigated issue in the study of social networks because of its potential commercial and social value. The purpose of IM is to identify a group of influential nodes that will spread information to other nodes in a network while simultaneously maximizing the number of nodes that are ultimately influenced. Traditional IM methods have different limitations, such as limited scalability to address large-scale networks and the neglect of community structural information. Here, we propose a novel influence maximization approach, i.e., the layered gravity bridge algorithm (LGB), to address the IM problem, which emphasizes the local structural information of networks and combines community detection algorithms with an improved gravity model. With the proposed LGB, a community detection method is used to derive the communities, and then the bridge nodes are found, which can be regarded as possible candidate seeds. Later, communities are merged into larger communities according to our proposed algorithm, and new bridge nodes are determined. Finally, all candidate seed nodes are sorted through an improved gravity model to determine the final seed nodes. The algorithm fully explores the network structural information provided by the communities, thereby making it superior to the current algorithms in terms of the number of ultimately infected nodes. Furthermore, our proposed algorithm possesses the potential to alleviate the influence overlap effect of seed nodes. To verify the effect of our approach, the classical SIR model is adopted to propagate information with the selected seed nodes, while experiments are performed on several practical datasets. As indicated by the obtained results, the performance of our proposed algorithm outperforms existing ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
阿兹卡班完成签到 ,获得积分10
3秒前
nicolaslcq完成签到,获得积分0
6秒前
在水一方应助科研通管家采纳,获得10
20秒前
42秒前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
weihe完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
xrrrr发布了新的文献求助10
3分钟前
3分钟前
1206425219密发布了新的文献求助10
3分钟前
4分钟前
脑洞疼应助科研通管家采纳,获得10
4分钟前
4分钟前
1206425219密发布了新的文献求助10
4分钟前
4分钟前
1206425219密完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
lxm发布了新的文献求助10
4分钟前
在水一方应助lxm采纳,获得10
5分钟前
1206425219密发布了新的文献求助10
5分钟前
6分钟前
虚心柠檬完成签到 ,获得积分10
6分钟前
完美世界应助科研通管家采纳,获得10
6分钟前
Docgyj完成签到 ,获得积分0
6分钟前
6分钟前
完美世界应助ggeng采纳,获得10
6分钟前
哈哈完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Routledge Handbook on Spaces of Mental Health and Wellbeing 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5324139
求助须知:如何正确求助?哪些是违规求助? 4465160
关于积分的说明 13894163
捐赠科研通 4356988
什么是DOI,文献DOI怎么找? 2393137
邀请新用户注册赠送积分活动 1386617
关于科研通互助平台的介绍 1356932