Influence maximization through exploring structural information

可扩展性 桥(图论) 群落结构 最大化 计算机科学 数据挖掘 数学 算法 数学优化 统计 医学 数据库 内科学
作者
Qi Li,Le Cheng,Wei Wang,Xianghua Li,Shudong Li,Peican Zhu
出处
期刊:Applied Mathematics and Computation [Elsevier BV]
卷期号:442: 127721-127721 被引量:22
标识
DOI:10.1016/j.amc.2022.127721
摘要

Influence maximization (IM) is a widely investigated issue in the study of social networks because of its potential commercial and social value. The purpose of IM is to identify a group of influential nodes that will spread information to other nodes in a network while simultaneously maximizing the number of nodes that are ultimately influenced. Traditional IM methods have different limitations, such as limited scalability to address large-scale networks and the neglect of community structural information. Here, we propose a novel influence maximization approach, i.e., the layered gravity bridge algorithm (LGB), to address the IM problem, which emphasizes the local structural information of networks and combines community detection algorithms with an improved gravity model. With the proposed LGB, a community detection method is used to derive the communities, and then the bridge nodes are found, which can be regarded as possible candidate seeds. Later, communities are merged into larger communities according to our proposed algorithm, and new bridge nodes are determined. Finally, all candidate seed nodes are sorted through an improved gravity model to determine the final seed nodes. The algorithm fully explores the network structural information provided by the communities, thereby making it superior to the current algorithms in terms of the number of ultimately infected nodes. Furthermore, our proposed algorithm possesses the potential to alleviate the influence overlap effect of seed nodes. To verify the effect of our approach, the classical SIR model is adopted to propagate information with the selected seed nodes, while experiments are performed on several practical datasets. As indicated by the obtained results, the performance of our proposed algorithm outperforms existing ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
emmm完成签到 ,获得积分10
1秒前
十三发布了新的文献求助10
1秒前
2秒前
2秒前
liangmh完成签到,获得积分10
2秒前
一二不休完成签到,获得积分10
2秒前
123发布了新的文献求助10
3秒前
5秒前
ding应助黑熊安巴尼采纳,获得10
6秒前
Ava应助wjxcl采纳,获得10
6秒前
闪闪如南发布了新的文献求助10
6秒前
深情安青应助一二不休采纳,获得10
7秒前
9秒前
123完成签到,获得积分10
9秒前
不扯先生完成签到,获得积分10
10秒前
柳絮完成签到,获得积分20
11秒前
lll完成签到,获得积分10
11秒前
sdl完成签到,获得积分10
11秒前
Orange应助孟婆的碗采纳,获得10
12秒前
zhangmy1989发布了新的文献求助30
12秒前
12秒前
清秀的不言完成签到 ,获得积分10
12秒前
杂化轨道退役研究员完成签到,获得积分10
12秒前
FashionBoy应助tanglu采纳,获得10
13秒前
14秒前
闪闪如南完成签到,获得积分10
15秒前
wjxcl完成签到,获得积分10
16秒前
16秒前
16秒前
12233完成签到,获得积分10
17秒前
17秒前
洪武完成签到,获得积分20
17秒前
18秒前
Yuantian发布了新的文献求助10
19秒前
传奇3应助浪花淘尽英雄采纳,获得10
20秒前
流川枫完成签到,获得积分10
20秒前
赘婿应助leo采纳,获得10
20秒前
追寻夏烟完成签到 ,获得积分10
21秒前
闪闪寒云完成签到 ,获得积分10
21秒前
13633501455完成签到 ,获得积分10
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048