Influence maximization through exploring structural information

可扩展性 桥(图论) 群落结构 最大化 计算机科学 数据挖掘 数学 算法 数学优化 统计 医学 数据库 内科学
作者
Qi Li,Le Cheng,Wei Wang,Xianghua Li,Shudong Li,Peican Zhu
出处
期刊:Applied Mathematics and Computation [Elsevier]
卷期号:442: 127721-127721 被引量:29
标识
DOI:10.1016/j.amc.2022.127721
摘要

Influence maximization (IM) is a widely investigated issue in the study of social networks because of its potential commercial and social value. The purpose of IM is to identify a group of influential nodes that will spread information to other nodes in a network while simultaneously maximizing the number of nodes that are ultimately influenced. Traditional IM methods have different limitations, such as limited scalability to address large-scale networks and the neglect of community structural information. Here, we propose a novel influence maximization approach, i.e., the layered gravity bridge algorithm (LGB), to address the IM problem, which emphasizes the local structural information of networks and combines community detection algorithms with an improved gravity model. With the proposed LGB, a community detection method is used to derive the communities, and then the bridge nodes are found, which can be regarded as possible candidate seeds. Later, communities are merged into larger communities according to our proposed algorithm, and new bridge nodes are determined. Finally, all candidate seed nodes are sorted through an improved gravity model to determine the final seed nodes. The algorithm fully explores the network structural information provided by the communities, thereby making it superior to the current algorithms in terms of the number of ultimately infected nodes. Furthermore, our proposed algorithm possesses the potential to alleviate the influence overlap effect of seed nodes. To verify the effect of our approach, the classical SIR model is adopted to propagate information with the selected seed nodes, while experiments are performed on several practical datasets. As indicated by the obtained results, the performance of our proposed algorithm outperforms existing ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助沉默红牛采纳,获得10
2秒前
怕孤单的奇异果完成签到,获得积分10
4秒前
5秒前
小蘑菇应助Lars汉堡采纳,获得10
5秒前
heher完成签到 ,获得积分10
5秒前
刘虹完成签到,获得积分20
5秒前
6秒前
万能图书馆应助酷炫灰狼采纳,获得10
7秒前
baiyeok发布了新的文献求助30
8秒前
Owen应助峰峰采纳,获得10
8秒前
研友_VZG7GZ应助fahbfafajk采纳,获得10
8秒前
9秒前
郭子仪发布了新的文献求助10
11秒前
科研通AI6应助范fan采纳,获得30
11秒前
挽月白完成签到,获得积分10
11秒前
12秒前
嘿嘿发布了新的文献求助10
12秒前
13秒前
15秒前
15秒前
hony完成签到,获得积分10
18秒前
斯文败类应助郭子仪采纳,获得30
18秒前
19秒前
Thien应助lyp采纳,获得10
19秒前
19秒前
yyanxuemin919发布了新的文献求助10
20秒前
研友_Lmb15n发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
上帝粒子应助Liu采纳,获得50
23秒前
李伟峰完成签到,获得积分10
23秒前
24秒前
wy发布了新的文献求助10
24秒前
冷酷莫言发布了新的文献求助10
25秒前
qwer发布了新的文献求助10
25秒前
26秒前
嘿嘿发布了新的文献求助10
26秒前
jiabu完成签到 ,获得积分10
27秒前
学术费物发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432