亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Influence maximization through exploring structural information

可扩展性 桥(图论) 群落结构 最大化 计算机科学 数据挖掘 数学 算法 数学优化 统计 医学 数据库 内科学
作者
Qi Li,Le Cheng,Wei Wang,Xianghua Li,Shudong Li,Peican Zhu
出处
期刊:Applied Mathematics and Computation [Elsevier BV]
卷期号:442: 127721-127721 被引量:22
标识
DOI:10.1016/j.amc.2022.127721
摘要

Influence maximization (IM) is a widely investigated issue in the study of social networks because of its potential commercial and social value. The purpose of IM is to identify a group of influential nodes that will spread information to other nodes in a network while simultaneously maximizing the number of nodes that are ultimately influenced. Traditional IM methods have different limitations, such as limited scalability to address large-scale networks and the neglect of community structural information. Here, we propose a novel influence maximization approach, i.e., the layered gravity bridge algorithm (LGB), to address the IM problem, which emphasizes the local structural information of networks and combines community detection algorithms with an improved gravity model. With the proposed LGB, a community detection method is used to derive the communities, and then the bridge nodes are found, which can be regarded as possible candidate seeds. Later, communities are merged into larger communities according to our proposed algorithm, and new bridge nodes are determined. Finally, all candidate seed nodes are sorted through an improved gravity model to determine the final seed nodes. The algorithm fully explores the network structural information provided by the communities, thereby making it superior to the current algorithms in terms of the number of ultimately infected nodes. Furthermore, our proposed algorithm possesses the potential to alleviate the influence overlap effect of seed nodes. To verify the effect of our approach, the classical SIR model is adopted to propagate information with the selected seed nodes, while experiments are performed on several practical datasets. As indicated by the obtained results, the performance of our proposed algorithm outperforms existing ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
jennie完成签到 ,获得积分10
24秒前
24秒前
艾米发布了新的文献求助10
28秒前
42秒前
sycsyc完成签到,获得积分10
47秒前
轻松的惜芹应助艾米采纳,获得10
47秒前
轻松的惜芹应助艾米采纳,获得10
47秒前
47秒前
48秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
guoze完成签到,获得积分10
1分钟前
1分钟前
田様应助执着的草丛采纳,获得10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
哈尔滨发布了新的文献求助10
2分钟前
2分钟前
2分钟前
伯赏元彤发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
我是老大应助执着的草丛采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976665
求助须知:如何正确求助?哪些是违规求助? 3520756
关于积分的说明 11204771
捐赠科研通 3257528
什么是DOI,文献DOI怎么找? 1798733
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629