清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Robust probabilistic modeling for single-cell multimodal mosaic integration and imputation via scVAEIT

计算机科学 插补(统计学) 缺少数据 人工智能 过度拟合 机器学习 数据集成 概率逻辑 数据挖掘 自编码 多模式学习 模式识别(心理学) 深度学习 人工神经网络
作者
Jin‐Hong Du,Zhanrui Cai,Kathryn Roeder
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:119 (49) 被引量:10
标识
DOI:10.1073/pnas.2214414119
摘要

Recent advances in single-cell technologies enable joint profiling of multiple omics. These profiles can reveal the complex interplay of different regulatory layers in single cells; still, new challenges arise when integrating datasets with some features shared across experiments and others exclusive to a single source; combining information across these sources is called mosaic integration. The difficulties lie in imputing missing molecular layers to build a self-consistent atlas, finding a common latent space, and transferring learning to new data sources robustly. Existing mosaic integration approaches based on matrix factorization cannot efficiently adapt to nonlinear embeddings for the latent cell space and are not designed for accurate imputation of missing molecular layers. By contrast, we propose a probabilistic variational autoencoder model, scVAEIT, to integrate and impute multimodal datasets with mosaic measurements. A key advance is the use of a missing mask for learning the conditional distribution of unobserved modalities and features, which makes scVAEIT flexible to combine different panels of measurements from multimodal datasets accurately and in an end-to-end manner. Imputing the masked features serves as a supervised learning procedure while preventing overfitting by regularization. Focusing on gene expression, protein abundance, and chromatin accessibility, we validate that scVAEIT robustly imputes the missing modalities and features of cells biologically different from the training data. scVAEIT also adjusts for batch effects while maintaining the biological variation, which provides better latent representations for the integrated datasets. We demonstrate that scVAEIT significantly improves integration and imputation across unseen cell types, different technologies, and different tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3927456843完成签到,获得积分10
24秒前
34秒前
孤独幻桃发布了新的文献求助10
48秒前
充电宝应助孤独幻桃采纳,获得30
1分钟前
紫荆完成签到 ,获得积分10
1分钟前
方白秋完成签到,获得积分10
2分钟前
孤独幻桃完成签到,获得积分10
3分钟前
4分钟前
Z可发布了新的文献求助10
4分钟前
5分钟前
洒家完成签到 ,获得积分10
6分钟前
SciGPT应助连安阳采纳,获得10
6分钟前
7分钟前
连安阳发布了新的文献求助10
7分钟前
vitamin完成签到 ,获得积分10
7分钟前
耍酷平凡发布了新的文献求助30
7分钟前
无悔完成签到 ,获得积分10
8分钟前
大医仁心完成签到 ,获得积分10
8分钟前
聪明的云完成签到 ,获得积分10
8分钟前
稻子完成签到 ,获得积分10
9分钟前
dinglingling完成签到 ,获得积分10
9分钟前
研友_VZG7GZ应助耍酷平凡采纳,获得10
9分钟前
CHEN完成签到 ,获得积分10
9分钟前
9分钟前
9分钟前
Arthur Zhu完成签到,获得积分10
9分钟前
10分钟前
10分钟前
11分钟前
11分钟前
11分钟前
熊猫胖胖WITH超人完成签到,获得积分20
11分钟前
11分钟前
耍酷平凡发布了新的文献求助10
11分钟前
11分钟前
ewxf2001发布了新的文献求助10
12分钟前
12分钟前
花园里的蒜完成签到 ,获得积分0
12分钟前
荔枝发布了新的文献求助20
12分钟前
ewxf2001完成签到,获得积分10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582561
求助须知:如何正确求助?哪些是违规求助? 4000248
关于积分的说明 12382295
捐赠科研通 3675315
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108