亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust probabilistic modeling for single-cell multimodal mosaic integration and imputation via scVAEIT

计算机科学 插补(统计学) 缺少数据 人工智能 过度拟合 机器学习 数据集成 概率逻辑 数据挖掘 自编码 多模式学习 模式识别(心理学) 深度学习 人工神经网络
作者
Jin‐Hong Du,Zhanrui Cai,Kathryn Roeder
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:119 (49) 被引量:10
标识
DOI:10.1073/pnas.2214414119
摘要

Recent advances in single-cell technologies enable joint profiling of multiple omics. These profiles can reveal the complex interplay of different regulatory layers in single cells; still, new challenges arise when integrating datasets with some features shared across experiments and others exclusive to a single source; combining information across these sources is called mosaic integration. The difficulties lie in imputing missing molecular layers to build a self-consistent atlas, finding a common latent space, and transferring learning to new data sources robustly. Existing mosaic integration approaches based on matrix factorization cannot efficiently adapt to nonlinear embeddings for the latent cell space and are not designed for accurate imputation of missing molecular layers. By contrast, we propose a probabilistic variational autoencoder model, scVAEIT, to integrate and impute multimodal datasets with mosaic measurements. A key advance is the use of a missing mask for learning the conditional distribution of unobserved modalities and features, which makes scVAEIT flexible to combine different panels of measurements from multimodal datasets accurately and in an end-to-end manner. Imputing the masked features serves as a supervised learning procedure while preventing overfitting by regularization. Focusing on gene expression, protein abundance, and chromatin accessibility, we validate that scVAEIT robustly imputes the missing modalities and features of cells biologically different from the training data. scVAEIT also adjusts for batch effects while maintaining the biological variation, which provides better latent representations for the integrated datasets. We demonstrate that scVAEIT significantly improves integration and imputation across unseen cell types, different technologies, and different tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YoungJC66发布了新的文献求助10
刚刚
4秒前
YoungJC66完成签到,获得积分10
8秒前
11秒前
今后应助海派Hi采纳,获得10
15秒前
zgsjymysmyy发布了新的文献求助10
15秒前
17秒前
量子星尘发布了新的文献求助10
19秒前
小栗子发布了新的文献求助10
23秒前
浮游应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
zgsjymysmyy完成签到 ,获得积分10
34秒前
37秒前
葉鳳怡完成签到 ,获得积分10
38秒前
hb完成签到,获得积分10
43秒前
于欣然完成签到,获得积分10
45秒前
思源应助好主意采纳,获得10
49秒前
汉堡包应助sxmt123456789采纳,获得10
50秒前
车厘子完成签到 ,获得积分10
52秒前
52秒前
安详的夜春完成签到,获得积分10
56秒前
Hhhhh完成签到 ,获得积分10
1分钟前
美罗培南完成签到,获得积分0
1分钟前
zzz1231123完成签到,获得积分10
1分钟前
今后应助Jsihao采纳,获得10
1分钟前
1分钟前
GingerF应助着急的冬寒采纳,获得50
1分钟前
失眠的向秋完成签到,获得积分20
1分钟前
1分钟前
sxmt123456789发布了新的文献求助10
1分钟前
好主意发布了新的文献求助10
1分钟前
江氏巨颏虎完成签到,获得积分10
1分钟前
陶醉的钢笔完成签到 ,获得积分0
1分钟前
Party完成签到,获得积分10
1分钟前
自信日记本完成签到 ,获得积分10
1分钟前
GingerF应助着急的冬寒采纳,获得50
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426276
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171636
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164