Robust probabilistic modeling for single-cell multimodal mosaic integration and imputation via scVAEIT

计算机科学 插补(统计学) 缺少数据 人工智能 过度拟合 机器学习 数据集成 概率逻辑 数据挖掘 自编码 多模式学习 模式识别(心理学) 深度学习 人工神经网络
作者
Jin‐Hong Du,Zhanrui Cai,Kathryn Roeder
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:119 (49) 被引量:10
标识
DOI:10.1073/pnas.2214414119
摘要

Recent advances in single-cell technologies enable joint profiling of multiple omics. These profiles can reveal the complex interplay of different regulatory layers in single cells; still, new challenges arise when integrating datasets with some features shared across experiments and others exclusive to a single source; combining information across these sources is called mosaic integration. The difficulties lie in imputing missing molecular layers to build a self-consistent atlas, finding a common latent space, and transferring learning to new data sources robustly. Existing mosaic integration approaches based on matrix factorization cannot efficiently adapt to nonlinear embeddings for the latent cell space and are not designed for accurate imputation of missing molecular layers. By contrast, we propose a probabilistic variational autoencoder model, scVAEIT, to integrate and impute multimodal datasets with mosaic measurements. A key advance is the use of a missing mask for learning the conditional distribution of unobserved modalities and features, which makes scVAEIT flexible to combine different panels of measurements from multimodal datasets accurately and in an end-to-end manner. Imputing the masked features serves as a supervised learning procedure while preventing overfitting by regularization. Focusing on gene expression, protein abundance, and chromatin accessibility, we validate that scVAEIT robustly imputes the missing modalities and features of cells biologically different from the training data. scVAEIT also adjusts for batch effects while maintaining the biological variation, which provides better latent representations for the integrated datasets. We demonstrate that scVAEIT significantly improves integration and imputation across unseen cell types, different technologies, and different tissues.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
酷炫的星星完成签到,获得积分10
1秒前
2秒前
废羊羊完成签到 ,获得积分10
2秒前
2秒前
3秒前
冰冰大王完成签到,获得积分10
4秒前
小妮子完成签到,获得积分10
4秒前
wohawohaa完成签到,获得积分10
4秒前
彭蓬给彭蓬的求助进行了留言
5秒前
5秒前
实验顺利应助Gavin采纳,获得30
5秒前
吕曼完成签到,获得积分10
5秒前
晨晨晨完成签到,获得积分10
6秒前
egoistMM完成签到,获得积分10
6秒前
清心淡如水完成签到 ,获得积分10
6秒前
6秒前
冰冰大王发布了新的文献求助20
7秒前
Jasper应助修澈采纳,获得10
7秒前
霜降发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
小鹿5460完成签到,获得积分10
8秒前
lylyspeechless完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
小妮子发布了新的文献求助10
9秒前
xiaoxiao完成签到,获得积分10
9秒前
9秒前
9秒前
Jiping Ni完成签到,获得积分10
9秒前
JY'完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
胡雅琴完成签到,获得积分10
11秒前
chigga发布了新的文献求助10
13秒前
subohr完成签到,获得积分10
13秒前
FBSoos发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027