Robust probabilistic modeling for single-cell multimodal mosaic integration and imputation via scVAEIT

计算机科学 插补(统计学) 缺少数据 人工智能 过度拟合 机器学习 数据集成 概率逻辑 数据挖掘 自编码 多模式学习 模式识别(心理学) 深度学习 人工神经网络
作者
Jin‐Hong Du,Zhanrui Cai,Kathryn Roeder
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:119 (49) 被引量:10
标识
DOI:10.1073/pnas.2214414119
摘要

Recent advances in single-cell technologies enable joint profiling of multiple omics. These profiles can reveal the complex interplay of different regulatory layers in single cells; still, new challenges arise when integrating datasets with some features shared across experiments and others exclusive to a single source; combining information across these sources is called mosaic integration. The difficulties lie in imputing missing molecular layers to build a self-consistent atlas, finding a common latent space, and transferring learning to new data sources robustly. Existing mosaic integration approaches based on matrix factorization cannot efficiently adapt to nonlinear embeddings for the latent cell space and are not designed for accurate imputation of missing molecular layers. By contrast, we propose a probabilistic variational autoencoder model, scVAEIT, to integrate and impute multimodal datasets with mosaic measurements. A key advance is the use of a missing mask for learning the conditional distribution of unobserved modalities and features, which makes scVAEIT flexible to combine different panels of measurements from multimodal datasets accurately and in an end-to-end manner. Imputing the masked features serves as a supervised learning procedure while preventing overfitting by regularization. Focusing on gene expression, protein abundance, and chromatin accessibility, we validate that scVAEIT robustly imputes the missing modalities and features of cells biologically different from the training data. scVAEIT also adjusts for batch effects while maintaining the biological variation, which provides better latent representations for the integrated datasets. We demonstrate that scVAEIT significantly improves integration and imputation across unseen cell types, different technologies, and different tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温柔的姿发布了新的文献求助10
1秒前
1秒前
2秒前
所所应助罗拉采纳,获得10
4秒前
4秒前
天天快乐应助忐忑的阑香采纳,获得10
6秒前
哈哈完成签到,获得积分10
6秒前
苏su关注了科研通微信公众号
6秒前
少主发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
安静发布了新的文献求助10
9秒前
上官若男应助PANYIAO采纳,获得10
10秒前
13秒前
tingting9发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
Akim应助高手采纳,获得10
14秒前
14秒前
李健的小迷弟应助ZZZ采纳,获得10
14秒前
你好呀嘻嘻完成签到 ,获得积分10
14秒前
zwxzghgz完成签到,获得积分10
15秒前
hello发布了新的文献求助10
19秒前
19秒前
19秒前
19秒前
crazy完成签到,获得积分10
20秒前
咩咩羊发布了新的文献求助10
21秒前
易儿发布了新的文献求助10
21秒前
PANYIAO发布了新的文献求助10
22秒前
李彪完成签到,获得积分20
22秒前
小柒完成签到,获得积分10
23秒前
Lucas应助13223456采纳,获得10
24秒前
26秒前
chris发布了新的文献求助50
26秒前
简单面包完成签到,获得积分10
29秒前
踏实的老四完成签到,获得积分20
29秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989242
求助须知:如何正确求助?哪些是违规求助? 3531393
关于积分的说明 11253753
捐赠科研通 3270010
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136