Robust probabilistic modeling for single-cell multimodal mosaic integration and imputation via scVAEIT

计算机科学 插补(统计学) 缺少数据 人工智能 过度拟合 机器学习 数据集成 概率逻辑 数据挖掘 自编码 多模式学习 模式识别(心理学) 深度学习 人工神经网络
作者
Jin‐Hong Du,Zhanrui Cai,Kathryn Roeder
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:119 (49) 被引量:10
标识
DOI:10.1073/pnas.2214414119
摘要

Recent advances in single-cell technologies enable joint profiling of multiple omics. These profiles can reveal the complex interplay of different regulatory layers in single cells; still, new challenges arise when integrating datasets with some features shared across experiments and others exclusive to a single source; combining information across these sources is called mosaic integration. The difficulties lie in imputing missing molecular layers to build a self-consistent atlas, finding a common latent space, and transferring learning to new data sources robustly. Existing mosaic integration approaches based on matrix factorization cannot efficiently adapt to nonlinear embeddings for the latent cell space and are not designed for accurate imputation of missing molecular layers. By contrast, we propose a probabilistic variational autoencoder model, scVAEIT, to integrate and impute multimodal datasets with mosaic measurements. A key advance is the use of a missing mask for learning the conditional distribution of unobserved modalities and features, which makes scVAEIT flexible to combine different panels of measurements from multimodal datasets accurately and in an end-to-end manner. Imputing the masked features serves as a supervised learning procedure while preventing overfitting by regularization. Focusing on gene expression, protein abundance, and chromatin accessibility, we validate that scVAEIT robustly imputes the missing modalities and features of cells biologically different from the training data. scVAEIT also adjusts for batch effects while maintaining the biological variation, which provides better latent representations for the integrated datasets. We demonstrate that scVAEIT significantly improves integration and imputation across unseen cell types, different technologies, and different tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
樱栀发布了新的文献求助30
2秒前
称心凡霜完成签到,获得积分10
2秒前
酷波er应助可爱卿采纳,获得10
3秒前
3秒前
脑洞疼应助王小明采纳,获得10
3秒前
DrLin完成签到,获得积分10
3秒前
汉堡包应助王小明采纳,获得10
3秒前
3秒前
shhyyds完成签到,获得积分20
3秒前
4秒前
4秒前
火星上的跳跳糖完成签到,获得积分10
4秒前
张张完成签到,获得积分10
4秒前
5秒前
5秒前
清脆的从灵完成签到 ,获得积分10
5秒前
鲤鱼野狼完成签到,获得积分10
5秒前
6秒前
寒冷青寒完成签到,获得积分10
7秒前
黎li发布了新的文献求助10
8秒前
8秒前
Anna发布了新的文献求助10
8秒前
内向苠完成签到,获得积分10
8秒前
在喝咖啡ing完成签到,获得积分10
9秒前
白给完成签到,获得积分10
9秒前
9秒前
昏睡的醉山完成签到 ,获得积分10
10秒前
小蘑菇应助冷静幻悲采纳,获得10
10秒前
123发布了新的文献求助10
10秒前
赵子轩发布了新的文献求助10
10秒前
寒冷青寒发布了新的文献求助10
10秒前
10秒前
小炒肉完成签到,获得积分20
11秒前
陈少华发布了新的文献求助10
12秒前
沁秋发布了新的文献求助10
12秒前
樱栀完成签到,获得积分20
12秒前
小秦完成签到,获得积分10
12秒前
勤恳完成签到,获得积分10
13秒前
13秒前
爆改shoot完成签到,获得积分10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134421
求助须知:如何正确求助?哪些是违规求助? 2785363
关于积分的说明 7771655
捐赠科研通 2440968
什么是DOI,文献DOI怎么找? 1297647
科研通“疑难数据库(出版商)”最低求助积分说明 625023
版权声明 600812