Automating Robotic Micro-Assembly of Fluidic Chips and Single Fiber Compression Tests Based-on $XY\Theta$ Visual Measurement With High-Precision Fiducial Markers

符号 算法 基准标记 计算机科学 人工智能 数学 算术
作者
Antoine André,Olivier Lehmann,Jason Govilas,Guillaume J. Laurent,Hamdi Saadana,Patrick Sandoz,Vladimir Gauthier,Alexis Lefevre,Aude Bolopion,Joël Agnus,Vincent Placet,Cédric Clévy
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tase.2022.3218686
摘要

At small scales, automating robotic tasks such as assembly, force/displacement characterization, positioning, etc., appear to be particularly limited. This is due to the lack of sufficiently performing and easy-to-implement multi-degrees-of-freedom measurement systems able to measure the relative pose between micro-parts. In order to address this issue, a measurement method based on High-Precision fiducial markers (named HP code) is proposed. This measurement method combines a periodic pattern (providing high resolution by phase-based computation) with more regular QR codes (bringing versatile implementations and a quick detection). The design and method to efficiently locate these HP codes are presented in this paper. Experimental investigations demonstrate ultra-high resolution: $2$ nm and $5$ $\upmu$ rad along $X,Y$ and $\Theta$ respectively (i.e. one thousandth of a pixel typically). The method is designed to be scalable as well as self-calibrated and to provide high robustness and high versatility. Two typical challenging applications in the field of microrobotics are automated to demonstrate these disruptive performances and the easy-to-implement capability of the method: (1) the automated assembly of two micro-fluidic chips through visual servoing with an achieved positioning accuracy below $50$ nm, and (2) the automated micromechanical characterization of single fibers achieved by the integration of HP codes into a compliant structure enabling simultaneous micro-force and displacement sensing capabilities. These achievements highlight the versatility of the method and open the door to the rapid automation of high-quality robotic tasks at the micro scale. Note to Practitioners —The motivation for this work/study is based on the fact that many application areas are extensively orienting towards microrobotic systems to perform precise tasks with versatility. However, at the micro scale, many disturbances such as the effects of climate change strongly affect this precision. This problem is amplified by the fact that sensors cannot be easily integrated, either by lack of space or by the lack of measurement systems available. Vision-based approaches are widespread at this scale and appear very promising to measure the relative pose between micro-parts. Nevertheless, existing vision-based approaches like digital image correlation are both scale and texture dependent. Due to the lack of space, they are also difficult to use in practice at small scales for high resolution measurement. The main contribution of this paper lies in the capability to achieve ultra-high resolution measurements. For that, a structure based on High-Precision fiducial markers (named HP codes) is proposed and requires few and simple settings while achieving very high resolution both in position and orientation, typically down to one thousandth of a pixel and a few micro radians, respectively. It provides an off-the-shelf solution, versatile, easy to implement and achieves high resolution measurements in the plane (XY $\Theta$ ). HP codes are applicable to a wide range of applications such as tracking of a component/part of a mobile or deformable system, visual servoing of microrobots, positioning of samples, assembly of components or even mechanical characterization. A free distribution of the library is available online at https://projects.femto-st.fr/ vernier/.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王小可发布了新的文献求助10
1秒前
爆米花应助顾越采纳,获得30
1秒前
欧阳静芙完成签到,获得积分10
1秒前
2秒前
小青椒应助gxcfdc采纳,获得30
2秒前
NexusExplorer应助若离采纳,获得10
4秒前
刻苦的元风完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
科研通AI2S应助高兴的海亦采纳,获得10
7秒前
科研通AI2S应助高兴的海亦采纳,获得10
7秒前
科研通AI2S应助高兴的海亦采纳,获得10
7秒前
科研通AI2S应助高兴的海亦采纳,获得10
7秒前
科研通AI2S应助高兴的海亦采纳,获得10
7秒前
科研通AI2S应助高兴的海亦采纳,获得10
7秒前
科研通AI2S应助高兴的海亦采纳,获得10
7秒前
科研通AI2S应助高兴的海亦采纳,获得10
7秒前
7秒前
8秒前
石家豪发布了新的文献求助30
8秒前
李健应助呱牛采纳,获得10
8秒前
发论文完成签到 ,获得积分10
9秒前
TongTong完成签到,获得积分10
9秒前
10秒前
安冉然发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
FashionBoy应助标致小天鹅采纳,获得10
13秒前
林狗发布了新的文献求助10
13秒前
rrrrr发布了新的文献求助10
13秒前
yshog发布了新的文献求助10
13秒前
若离发布了新的文献求助10
14秒前
无奈敏发布了新的文献求助10
15秒前
安徒完成签到,获得积分10
15秒前
陈瑞滢发布了新的文献求助10
15秒前
15秒前
激昂的千秋完成签到,获得积分10
16秒前
充电小子完成签到 ,获得积分10
17秒前
林狗完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337