GRU-Based Interpretable Multivariate Time Series Anomaly Detection in Industrial Control System

可解释性 异常检测 多元统计 计算机科学 单变量 时间序列 数据挖掘 人工智能 模式识别(心理学) 机器学习
作者
Chaofan Tang,Lijuan Xu,Bo Yang,Yongwei Tang,Dawei Zhao
出处
期刊:Computers & Security [Elsevier BV]
卷期号:127: 103094-103094 被引量:49
标识
DOI:10.1016/j.cose.2023.103094
摘要

Interpretable multivariate time series anomaly detection is an important technology to prevent accidents and ensure the reliable operation of Industrial Control Systems. A key limitation lies in the lack of a model to achieve better detection performance and more reliable interpretability, and keep a balance between performance efficiency and training optimization. In this paper, we propose GRN, an Interpretable Multivariate Time Series Anomaly Detection method based on neural graph networks and gated recurrent units (GRU). GRN can automatically learn potential correlations between sensors from multidimensional industrial control time series data, quickly mine long-term and short-term dependencies, to improve detection performance and help users to infer the root cause of detected anomalies. Based on GRU, GRN preserves the original advantages of processing the sequences and capturing the time series dependencies, moreover solves the problem of gradient disappearance and gradient explosion. We compare the performance of nine state-of-the-art algorithms on two real water treatment datasets (SWaT, WADI). GRN achieves better detection precision and recall. Meanwhile, the comparison of Area Under the Curve (AUC) demonstrates that GRN has the effect of maintaining balance between detection performance and training optimization. Compared with a Graph Deviation Network(GDN), GRN has achieved greater interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ale发布了新的文献求助10
1秒前
1秒前
SYLH应助独特的翠芙采纳,获得50
3秒前
yao驳回了充电宝应助
3秒前
体贴薯片发布了新的文献求助10
3秒前
何敏应助超级月饼采纳,获得10
3秒前
huayi发布了新的文献求助10
4秒前
略略略应助程院采纳,获得10
4秒前
万能图书馆应助程院采纳,获得10
4秒前
李健的小迷弟应助坚果采纳,获得10
4秒前
5秒前
5秒前
5秒前
斯文败类应助Ale采纳,获得10
6秒前
6秒前
alltoowell完成签到,获得积分0
8秒前
9秒前
Hello应助星星采纳,获得10
9秒前
小狸睡觉啦完成签到,获得积分10
10秒前
10秒前
Anany完成签到,获得积分10
11秒前
11秒前
三跳发布了新的文献求助10
11秒前
艾琳克斯完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
大气的火龙果完成签到 ,获得积分10
17秒前
17秒前
21秒前
FashionBoy应助开心之王采纳,获得10
22秒前
22秒前
catyew完成签到 ,获得积分10
25秒前
领导范儿应助孔孔采纳,获得50
27秒前
pyQaQ完成签到,获得积分20
27秒前
LouisYRJ发布了新的文献求助30
27秒前
29秒前
落后的冬寒完成签到,获得积分10
29秒前
Huangxy完成签到,获得积分10
30秒前
科研通AI5应助南兮采纳,获得10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971670
求助须知:如何正确求助?哪些是违规求助? 3516348
关于积分的说明 11182142
捐赠科研通 3251567
什么是DOI,文献DOI怎么找? 1795907
邀请新用户注册赠送积分活动 876155
科研通“疑难数据库(出版商)”最低求助积分说明 805318