Deep Multitask Learning by Stacked Long Short-Term Memory for Predicting Personalized Blood Glucose Concentration

均方误差 人工智能 深度学习 计算机科学 稳健性(进化) 机器学习 模式识别(心理学) 数学 统计 生物化学 基因 化学
作者
Md Maruf Hossain Shuvo,Syed K. Islam
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 1612-1623 被引量:21
标识
DOI:10.1109/jbhi.2022.3233486
摘要

The adverse glycemic events triggered by the inaccurate insulin infusion in Type I diabetes (T1D) can lead to fatal complications. Predicting blood glucose concentration (BGC) based on clinical health records is critical for control algorithms in the artificial pancreas (AP) and aiding in medical decision support. This paper presents a novel deep learning (DL) model incorporating multitask learning (MTL) for personalized blood glucose prediction. The network architecture consists of shared and clustered hidden layers. Two layers of stacked long short-term memory (LSTM) form the shared hidden layers that learn generalized features from all subjects. The clustered hidden layers comprise two dense layers adapting to the gender-specific variability in the data. Finally, the subject-specific dense layers offer additional fine-tuning to personalized glucose dynamics resulting in an accurate BGC prediction at the output. OhioT1DM clinical dataset is used for the training and performance evaluation of the proposed model. A detailed analytical and clinical assessment have been performed using root mean square (RMSE), mean absolute error (MAE), and Clarke error grid analysis (EGA), respectively, which demonstrates the robustness and reliability of the proposed method. Consistently leading performance has been achieved for 30- (RMSE = 16.06 ±2.74, MAE = 10.64 ±1.35), 60- (RMSE = 30.89 ±4.31, MAE = 22.07 ±2.96), 90- (RMSE = 40.51 ±5.16, MAE = 30.16 ±4.10), and 120-minute (RMSE = 47.39 ±5.62, MAE = 36.36 ±4.54) prediction horizon (PH). In addition, the EGA analysis confirms the clinical feasibility by maintaining more than 94 % BGC predictions in the clinically safe zone for up to 120-minute PH. Moreover, the improvement is established by benchmarking against the state-of-the-art statistical, machine learning (ML), and deep learning (DL) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊逸海安发布了新的文献求助30
1秒前
恶恶么v发布了新的文献求助10
3秒前
4秒前
福明明发布了新的文献求助10
4秒前
5秒前
张张完成签到 ,获得积分10
6秒前
顾矜应助文子采纳,获得10
7秒前
Stair发布了新的文献求助10
9秒前
10秒前
鲤鱼鸽子应助Cassie采纳,获得10
10秒前
10秒前
川流与行云完成签到,获得积分10
10秒前
Augenstern发布了新的文献求助10
10秒前
叶远望发布了新的文献求助10
12秒前
lcxszsd发布了新的文献求助10
14秒前
科研的神龙猫完成签到,获得积分10
14秒前
小小K发布了新的文献求助10
14秒前
彭于晏应助谢峥嵘采纳,获得10
14秒前
15秒前
Ha La La La发布了新的文献求助10
16秒前
华仔应助大邱白菜采纳,获得10
17秒前
斯南完成签到,获得积分10
18秒前
19秒前
20秒前
小小K完成签到,获得积分20
20秒前
量子星尘发布了新的文献求助10
22秒前
Stair完成签到,获得积分10
23秒前
善学以致用应助叶远望采纳,获得10
23秒前
24秒前
24秒前
小晚风完成签到,获得积分10
25秒前
菠萝派发布了新的文献求助10
25秒前
112233完成签到,获得积分20
26秒前
atonnng完成签到,获得积分10
27秒前
28秒前
May完成签到 ,获得积分10
29秒前
29秒前
jianglili发布了新的文献求助10
30秒前
33秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502250
关于积分的说明 11106925
捐赠科研通 3232714
什么是DOI,文献DOI怎么找? 1787067
邀请新用户注册赠送积分活动 870375
科研通“疑难数据库(出版商)”最低求助积分说明 801994