Deep Multitask Learning by Stacked Long Short-Term Memory for Predicting Personalized Blood Glucose Concentration

均方误差 人工智能 深度学习 计算机科学 稳健性(进化) 机器学习 血糖性 模式识别(心理学) 数学 统计 糖尿病 医学 生物化学 基因 内分泌学 化学
作者
Md. Maruf Hossain Shuvo,Syed K. Islam
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (3): 1612-1623
标识
DOI:10.1109/jbhi.2022.3233486
摘要

The adverse glycemic events triggered by the inaccurate insulin infusion in Type I diabetes (T1D) can lead to fatal complications. Predicting blood glucose concentration (BGC) based on clinical health records is critical for control algorithms in the artificial pancreas (AP) and aiding in medical decision support. This paper presents a novel deep learning (DL) model incorporating multitask learning (MTL) for personalized blood glucose prediction. The network architecture consists of shared and clustered hidden layers. Two layers of stacked long short-term memory (LSTM) form the shared hidden layers that learn generalized features from all subjects. The clustered hidden layers comprise two dense layers adapting to the gender-specific variability in the data. Finally, the subject-specific dense layers offer additional fine-tuning to personalized glucose dynamics resulting in an accurate BGC prediction at the output. OhioT1DM clinical dataset is used for the training and performance evaluation of the proposed model. A detailed analytical and clinical assessment have been performed using root mean square (RMSE), mean absolute error (MAE), and Clarke error grid analysis (EGA), respectively, which demonstrates the robustness and reliability of the proposed method. Consistently leading performance has been achieved for 30- (RMSE = 16.06 $\pm$ 2.74, MAE = 10.64 $\pm$ 1.35), 60- (RMSE = 30.89 $\pm$ 4.31, MAE = 22.07 $\pm$ 2.96), 90- (RMSE = 40.51 $\pm$ 5.16, MAE = 30.16 $\pm$ 4.10), and 120-minute (RMSE = 47.39 $\pm$ 5.62, MAE = 36.36 $\pm$ 4.54) prediction horizon (PH). In addition, the EGA analysis confirms the clinical feasibility by maintaining more than 94% BGC predictions in the clinically safe zone for up to 120-minute PH. Moreover, the improvement is established by benchmarking against the state-of-the-art statistical, machine learning (ML), and deep learning (DL) methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pdc发布了新的文献求助10
刚刚
科研通AI2S应助zz采纳,获得10
1秒前
大大大大大完成签到,获得积分10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
3秒前
大鱼完成签到,获得积分10
4秒前
小星星发布了新的文献求助10
5秒前
YYX完成签到 ,获得积分10
6秒前
7秒前
NexusExplorer应助二次元喵酱采纳,获得10
8秒前
易烊千玺完成签到,获得积分10
8秒前
11秒前
朴实的面包完成签到 ,获得积分10
11秒前
pdc完成签到,获得积分10
13秒前
单薄的浩阑完成签到 ,获得积分10
13秒前
14秒前
二次元喵酱完成签到,获得积分10
14秒前
14秒前
可乐发布了新的文献求助10
17秒前
19秒前
19秒前
20秒前
小二郎应助小星星采纳,获得10
20秒前
yar应助单薄的浩阑采纳,获得10
20秒前
21秒前
2021发布了新的文献求助10
21秒前
M1982发布了新的文献求助10
25秒前
26秒前
26秒前
27秒前
原子完成签到,获得积分10
29秒前
vicky完成签到,获得积分10
30秒前
科目三应助lifescience1采纳,获得10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316163
求助须知:如何正确求助?哪些是违规求助? 2947769
关于积分的说明 8538487
捐赠科研通 2623875
什么是DOI,文献DOI怎么找? 1435579
科研通“疑难数据库(出版商)”最低求助积分说明 665632
邀请新用户注册赠送积分活动 651457