Discriminative kernel convolution network for multi-label ophthalmic disease detection on imbalanced fundus image dataset

判别式 人工智能 计算机科学 模式识别(心理学) 卷积神经网络 特征(语言学) 眼底(子宫) 核(代数) 水准点(测量) 支持向量机 块(置换群论) 医学 眼科 数学 哲学 组合数学 语言学 地理 大地测量学 几何学
作者
Amit Bhati,Neha Gour,Pritee Khanna,Aparajita Ojha
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:153: 106519-106519 被引量:24
标识
DOI:10.1016/j.compbiomed.2022.106519
摘要

It is feasible to recognize the presence and seriousness of eye disease by investigating the progressions in retinal biological structures. Fundus examination is a diagnostic procedure to examine the biological structure and anomalies present in the eye. Ophthalmic diseases like glaucoma, diabetic retinopathy, and cataracts are the main cause of visual impairment worldwide. Ocular Disease Intelligent Recognition (ODIR-5K) is a benchmark structured fundus image dataset utilized by researchers for multi-label multi-disease classification of fundus images. This work presents a Discriminative Kernel Convolution Network (DKCNet), which explores discriminative region-wise features without adding extra computational cost. DKCNet is composed of an attention block followed by a Squeeze-and-Excitation (SE) block. The attention block takes features from the backbone network and generates discriminative feature attention maps. The SE block takes the discriminative feature maps and improves channel interdependencies. Better performance of DKCNet is observed with InceptionResnet backbone network for multi-label classification of ODIR-5K fundus images with 96.08 AUC, 94.28 F1-score, and 0.81 kappa score. The proposed method splits the common target label for an eye pair based on the diagnostic keyword. Based on these labels, over-sampling and/or under-sampling are done to resolve the class imbalance. To check the bias of the proposed model towards training data, the model trained on the ODIR dataset is tested on three publicly available benchmark datasets. It is observed that the proposed DKCNet gives good performance on completely unseen fundus images also.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李李发布了新的文献求助30
1秒前
MMM完成签到 ,获得积分10
1秒前
彩色大碗完成签到,获得积分10
1秒前
Derik发布了新的文献求助10
1秒前
2秒前
我是老大应助科研通管家采纳,获得10
3秒前
3秒前
Akim应助科研通管家采纳,获得10
3秒前
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
多多发布了新的文献求助10
4秒前
XiaoDai完成签到,获得积分10
7秒前
9秒前
9秒前
风趣的语蕊完成签到,获得积分10
10秒前
曾国强发布了新的文献求助10
13秒前
山手完成签到,获得积分20
13秒前
SYLH应助朝天椒采纳,获得10
14秒前
艾科研完成签到,获得积分10
19秒前
21秒前
朱博完成签到,获得积分10
22秒前
曾国强完成签到,获得积分10
22秒前
24秒前
24秒前
海棠花未眠完成签到,获得积分10
25秒前
25秒前
123444发布了新的文献求助10
25秒前
25秒前
YM完成签到,获得积分10
27秒前
吕不韦发布了新的文献求助10
28秒前
ruochenzu发布了新的文献求助10
29秒前
科研通AI5应助123444采纳,获得10
31秒前
32秒前
zhou默完成签到,获得积分10
32秒前
华仔应助Derik采纳,获得10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966246
求助须知:如何正确求助?哪些是违规求助? 3511683
关于积分的说明 11159207
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874347
科研通“疑难数据库(出版商)”最低求助积分说明 804343