Discriminative kernel convolution network for multi-label ophthalmic disease detection on imbalanced fundus image dataset

判别式 人工智能 计算机科学 模式识别(心理学) 卷积神经网络 特征(语言学) 眼底(子宫) 核(代数) 水准点(测量) 支持向量机 块(置换群论) 医学 眼科 数学 组合数学 哲学 语言学 几何学 大地测量学 地理
作者
Amit Bhati,Neha Gour,Pritee Khanna,Aparajita Ojha
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:153: 106519-106519 被引量:24
标识
DOI:10.1016/j.compbiomed.2022.106519
摘要

It is feasible to recognize the presence and seriousness of eye disease by investigating the progressions in retinal biological structures. Fundus examination is a diagnostic procedure to examine the biological structure and anomalies present in the eye. Ophthalmic diseases like glaucoma, diabetic retinopathy, and cataracts are the main cause of visual impairment worldwide. Ocular Disease Intelligent Recognition (ODIR-5K) is a benchmark structured fundus image dataset utilized by researchers for multi-label multi-disease classification of fundus images. This work presents a Discriminative Kernel Convolution Network (DKCNet), which explores discriminative region-wise features without adding extra computational cost. DKCNet is composed of an attention block followed by a Squeeze-and-Excitation (SE) block. The attention block takes features from the backbone network and generates discriminative feature attention maps. The SE block takes the discriminative feature maps and improves channel interdependencies. Better performance of DKCNet is observed with InceptionResnet backbone network for multi-label classification of ODIR-5K fundus images with 96.08 AUC, 94.28 F1-score, and 0.81 kappa score. The proposed method splits the common target label for an eye pair based on the diagnostic keyword. Based on these labels, over-sampling and/or under-sampling are done to resolve the class imbalance. To check the bias of the proposed model towards training data, the model trained on the ODIR dataset is tested on three publicly available benchmark datasets. It is observed that the proposed DKCNet gives good performance on completely unseen fundus images also.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
2秒前
归尘发布了新的文献求助10
2秒前
超帅pzc发布了新的文献求助10
2秒前
求学完成签到,获得积分10
3秒前
shifeng_zai完成签到,获得积分20
5秒前
求学发布了新的文献求助10
6秒前
6秒前
酿雪未成发布了新的文献求助10
6秒前
Ran-HT完成签到,获得积分10
8秒前
完美世界应助风趣的黑夜采纳,获得10
8秒前
9秒前
懵懂的翼完成签到,获得积分10
11秒前
昵称发布了新的文献求助10
12秒前
12秒前
zai完成签到,获得积分20
14秒前
zyc发布了新的文献求助30
14秒前
wuuu_ruby发布了新的文献求助10
15秒前
16秒前
fairy完成签到,获得积分20
17秒前
air应助懵懂的翼采纳,获得10
17秒前
18秒前
19秒前
19秒前
Adzuki0812完成签到 ,获得积分10
20秒前
20秒前
HUSH994发布了新的文献求助10
21秒前
wuuu_ruby完成签到,获得积分10
23秒前
zai完成签到,获得积分20
23秒前
小嘎发布了新的文献求助10
24秒前
24秒前
777完成签到,获得积分20
25秒前
27秒前
SciGPT应助椰椰采纳,获得10
27秒前
28秒前
小橙子发布了新的文献求助20
28秒前
29秒前
abc97完成签到,获得积分10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309982
求助须知:如何正确求助?哪些是违规求助? 2943089
关于积分的说明 8512665
捐赠科研通 2618199
什么是DOI,文献DOI怎么找? 1430922
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490