Discriminative kernel convolution network for multi-label ophthalmic disease detection on imbalanced fundus image dataset

判别式 人工智能 计算机科学 模式识别(心理学) 卷积神经网络 特征(语言学) 眼底(子宫) 核(代数) 水准点(测量) 支持向量机 块(置换群论) 医学 眼科 数学 哲学 组合数学 语言学 地理 大地测量学 几何学
作者
Amit Bhati,Neha Gour,Pritee Khanna,Aparajita Ojha
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:153: 106519-106519 被引量:45
标识
DOI:10.1016/j.compbiomed.2022.106519
摘要

It is feasible to recognize the presence and seriousness of eye disease by investigating the progressions in retinal biological structures. Fundus examination is a diagnostic procedure to examine the biological structure and anomalies present in the eye. Ophthalmic diseases like glaucoma, diabetic retinopathy, and cataracts are the main cause of visual impairment worldwide. Ocular Disease Intelligent Recognition (ODIR-5K) is a benchmark structured fundus image dataset utilized by researchers for multi-label multi-disease classification of fundus images. This work presents a Discriminative Kernel Convolution Network (DKCNet), which explores discriminative region-wise features without adding extra computational cost. DKCNet is composed of an attention block followed by a Squeeze-and-Excitation (SE) block. The attention block takes features from the backbone network and generates discriminative feature attention maps. The SE block takes the discriminative feature maps and improves channel interdependencies. Better performance of DKCNet is observed with InceptionResnet backbone network for multi-label classification of ODIR-5K fundus images with 96.08 AUC, 94.28 F1-score, and 0.81 kappa score. The proposed method splits the common target label for an eye pair based on the diagnostic keyword. Based on these labels, over-sampling and/or under-sampling are done to resolve the class imbalance. To check the bias of the proposed model towards training data, the model trained on the ODIR dataset is tested on three publicly available benchmark datasets. It is observed that the proposed DKCNet gives good performance on completely unseen fundus images also.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
高雨芳发布了新的文献求助10
刚刚
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得20
刚刚
所所应助科研通管家采纳,获得10
1秒前
ccm应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
Mic应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
彭于晏应助myj采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
1秒前
清秀的怀蕊完成签到 ,获得积分10
1秒前
keyan应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得20
2秒前
2秒前
子车茗应助科研通管家采纳,获得30
2秒前
2秒前
来日昭昭应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
2秒前
子车茗应助科研通管家采纳,获得30
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
wwy应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Mic应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得20
2秒前
李健应助科研通管家采纳,获得30
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660809
求助须知:如何正确求助?哪些是违规求助? 4835652
关于积分的说明 15091990
捐赠科研通 4819406
什么是DOI,文献DOI怎么找? 2579257
邀请新用户注册赠送积分活动 1533773
关于科研通互助平台的介绍 1492565