Interpretable Deep-Learning Approaches for Osteoporosis Risk Screening and Individualized Feature Analysis Using Large Population-Based Data: Model Development and Performance Evaluation

骨质疏松症 全国健康与营养检查调查 人工智能 股骨颈 医学 机器学习 骨矿物 人口 计算机科学 物理疗法 内科学 环境卫生
作者
Bogyeong Suh,Heejin Yu,Hye‐Yeon Kim,Sang-Hwa Lee,Sung Hye Kong,Jin‐Woo Kim,Jongeun Choi
出处
期刊:Journal of Medical Internet Research 卷期号:25: e40179-e40179 被引量:14
标识
DOI:10.2196/40179
摘要

Background Osteoporosis is one of the diseases that requires early screening and detection for its management. Common clinical tools and machine-learning (ML) models for screening osteoporosis have been developed, but they show limitations such as low accuracy. Moreover, these methods are confined to limited risk factors and lack individualized explanation. Objective The aim of this study was to develop an interpretable deep-learning (DL) model for osteoporosis risk screening with clinical features. Clinical interpretation with individual explanations of feature contributions is provided using an explainable artificial intelligence (XAI) technique. Methods We used two separate data sets: the National Health and Nutrition Examination Survey data sets from the United States (NHANES) and South Korea (KNHANES) with 8274 and 8680 respondents, respectively. The study population was classified according to the T-score of bone mineral density at the femoral neck or total femur. A DL model for osteoporosis diagnosis was trained on the data sets and significant risk factors were investigated with local interpretable model-agnostic explanations (LIME). The performance of the DL model was compared with that of ML models and conventional clinical tools. Additionally, contribution ranking of risk factors and individualized explanation of feature contribution were examined. Results Our DL model showed area under the curve (AUC) values of 0.851 (95% CI 0.844-0.858) and 0.922 (95% CI 0.916-0.928) for the femoral neck and total femur bone mineral density, respectively, using the NHANES data set. The corresponding AUC values for the KNHANES data set were 0.827 (95% CI 0.821-0.833) and 0.912 (95% CI 0.898-0.927), respectively. Through the LIME method, significant features were induced, and each feature’s integrated contribution and interpretation for individual risk were determined. Conclusions The developed DL model significantly outperforms conventional ML models and clinical tools. Our XAI model produces high-ranked features along with the integrated contributions of each feature, which facilitates the interpretation of individual risk. In summary, our interpretable model for osteoporosis risk screening outperformed state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
英姑应助书生采纳,获得10
3秒前
科研钓鱼佬完成签到,获得积分10
4秒前
6秒前
petrichor应助C_Cppp采纳,获得10
6秒前
nan完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
勤恳的雨文完成签到,获得积分10
7秒前
木森ab发布了新的文献求助10
8秒前
paul完成签到,获得积分10
8秒前
小鞋完成签到,获得积分10
9秒前
开心青旋发布了新的文献求助10
9秒前
fztnh发布了新的文献求助10
9秒前
无名花生完成签到 ,获得积分10
9秒前
11秒前
12秒前
12秒前
杜若完成签到,获得积分10
12秒前
12秒前
木森ab完成签到,获得积分20
14秒前
paul发布了新的文献求助10
15秒前
16秒前
MEME发布了新的文献求助10
19秒前
19秒前
情怀应助LSH970829采纳,获得10
19秒前
CHINA_C13发布了新的文献求助10
22秒前
Mars发布了新的文献求助10
23秒前
哈哈哈完成签到,获得积分10
23秒前
玛卡巴卡应助平常的毛豆采纳,获得100
24秒前
默默的青旋完成签到,获得积分10
25秒前
28秒前
搜集达人应助淡淡采白采纳,获得10
28秒前
高高代珊完成签到 ,获得积分10
29秒前
gmc发布了新的文献求助10
30秒前
30秒前
31秒前
善学以致用应助Mian采纳,获得10
31秒前
学科共进发布了新的文献求助60
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824