Interpretable Deep-Learning Approaches for Osteoporosis Risk Screening and Individualized Feature Analysis Using Large Population-Based Data: Model Development and Performance Evaluation

骨质疏松症 全国健康与营养检查调查 人工智能 股骨颈 医学 机器学习 骨矿物 人口 计算机科学 物理疗法 内科学 环境卫生
作者
Bogyeong Suh,Hee-Jin Yu,Hye-Yeon Kim,Sang-Hwa Lee,Sunghye Kong,Jin-Woo Kim,Jongeun Choi
出处
期刊:Journal of Medical Internet Research 卷期号:25: e40179-e40179 被引量:4
标识
DOI:10.2196/40179
摘要

Background Osteoporosis is one of the diseases that requires early screening and detection for its management. Common clinical tools and machine-learning (ML) models for screening osteoporosis have been developed, but they show limitations such as low accuracy. Moreover, these methods are confined to limited risk factors and lack individualized explanation. Objective The aim of this study was to develop an interpretable deep-learning (DL) model for osteoporosis risk screening with clinical features. Clinical interpretation with individual explanations of feature contributions is provided using an explainable artificial intelligence (XAI) technique. Methods We used two separate data sets: the National Health and Nutrition Examination Survey data sets from the United States (NHANES) and South Korea (KNHANES) with 8274 and 8680 respondents, respectively. The study population was classified according to the T-score of bone mineral density at the femoral neck or total femur. A DL model for osteoporosis diagnosis was trained on the data sets and significant risk factors were investigated with local interpretable model-agnostic explanations (LIME). The performance of the DL model was compared with that of ML models and conventional clinical tools. Additionally, contribution ranking of risk factors and individualized explanation of feature contribution were examined. Results Our DL model showed area under the curve (AUC) values of 0.851 (95% CI 0.844-0.858) and 0.922 (95% CI 0.916-0.928) for the femoral neck and total femur bone mineral density, respectively, using the NHANES data set. The corresponding AUC values for the KNHANES data set were 0.827 (95% CI 0.821-0.833) and 0.912 (95% CI 0.898-0.927), respectively. Through the LIME method, significant features were induced, and each feature’s integrated contribution and interpretation for individual risk were determined. Conclusions The developed DL model significantly outperforms conventional ML models and clinical tools. Our XAI model produces high-ranked features along with the integrated contributions of each feature, which facilitates the interpretation of individual risk. In summary, our interpretable model for osteoporosis risk screening outperformed state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
煜琪完成签到 ,获得积分10
5秒前
小呵完成签到 ,获得积分10
11秒前
XZZ完成签到 ,获得积分10
13秒前
笨笨忘幽完成签到,获得积分10
15秒前
超级无心完成签到,获得积分10
17秒前
毛毛弟完成签到 ,获得积分10
27秒前
theo完成签到 ,获得积分10
28秒前
salty完成签到 ,获得积分10
28秒前
WYnini完成签到 ,获得积分10
32秒前
张大星完成签到 ,获得积分10
33秒前
39秒前
40秒前
Singularity发布了新的文献求助10
44秒前
45秒前
lingshan完成签到 ,获得积分10
46秒前
热心雪一完成签到 ,获得积分10
1分钟前
victory_liu完成签到,获得积分10
1分钟前
牛奶拌可乐完成签到 ,获得积分10
1分钟前
钟声完成签到,获得积分0
1分钟前
小李叭叭完成签到,获得积分10
1分钟前
欣欣丽丽完成签到 ,获得积分0
1分钟前
宗嘻嘻完成签到 ,获得积分10
1分钟前
JXDYYZK完成签到,获得积分10
1分钟前
整齐的惮完成签到 ,获得积分10
1分钟前
adamchris完成签到 ,获得积分10
1分钟前
暗淡宇宙的蓝点完成签到 ,获得积分10
1分钟前
糖宝完成签到 ,获得积分10
1分钟前
Hayat发布了新的文献求助10
1分钟前
cyskdsn完成签到 ,获得积分10
1分钟前
Tong完成签到,获得积分0
1分钟前
CLTTT完成签到,获得积分10
1分钟前
吃小孩的妖怪完成签到 ,获得积分10
2分钟前
终焉完成签到 ,获得积分10
2分钟前
小伊001完成签到,获得积分10
2分钟前
火星完成签到 ,获得积分10
2分钟前
小不完成签到 ,获得积分10
2分钟前
石头完成签到,获得积分10
2分钟前
内向的八宝粥完成签到,获得积分10
2分钟前
yaoyaoyao完成签到 ,获得积分10
2分钟前
培培完成签到 ,获得积分10
2分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126186
求助须知:如何正确求助?哪些是违规求助? 2776349
关于积分的说明 7729904
捐赠科研通 2431800
什么是DOI,文献DOI怎么找? 1292298
科研通“疑难数据库(出版商)”最低求助积分说明 622696
版权声明 600430