材料科学
电导
神经形态工程学
渗流阈值
晶体管
场效应晶体管
渗透(认知心理学)
凝聚态物理
离子键合
光电子学
非平衡态热力学
纳米技术
化学物理
电阻率和电导率
电压
电气工程
人工神经网络
离子
物理
计算机科学
机器学习
量子力学
工程类
神经科学
生物
作者
Weijian Zhang,Yue Chen,Chenjie Xu,Chun Lin,Jianming Tao,Yingbin Lin,Jiaxin Li,Oleg Kolosov,Zhigao Huang
出处
期刊:Nano Energy
[Elsevier BV]
日期:2023-01-10
卷期号:108: 108199-108199
被引量:8
标识
DOI:10.1016/j.nanoen.2023.108199
摘要
While mixed ionic-electronic conductors with metal-insulator transition (MIT) are promising candidates for designing neuromorphic computing hardware, the fundamentals of resistive switching in these materials are yet to be well understood. This work studies the switching mechanism of the three-terminal nonvolatile redox transistor (NVRT) containing the LiCoO2 (LCO) channel layer with tunable preferred crystallographic orientation. We used atomic force microscope nanotomography to reconstruct the 3D conductance map of NVRTs, that reveals the applied gate electric-field induces the MIT via reversible phase separation in the LCO channel layer, with the nonequilibrium thermodynamics analytical model providing validation to this mechanism. By operating in the post-percolation region, the memory properties can continuously adjust the conductance states of NVRTs. The percolation conductance mechanism via the metallic LCO phase ensures the exceptional linearity and reproducibility of conductance modulation, whereas the field-, rather than current-, induced transition results in the low energy consumption replicating key features of the living neural cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI