覆盖层
材料科学
分解水
光电流
可逆氢电极
纳米棒
电化学
钝化
赤铁矿
原子层沉积
析氧
化学工程
光催化
纳米技术
无机化学
电极
催化作用
图层(电子)
物理化学
光电子学
冶金
工作电极
化学
工程类
生物化学
作者
Lianlian Mao,Yucheng Huang,Hao Deng,Fanqi Meng,Yanming Fu,Yiqing Wang,Mingtao Li,Qinghua Zhang,Chung‐Li Dong,Lin Gu,Shaohua Shen
出处
期刊:Small
[Wiley]
日期:2022-12-13
卷期号:19 (7)
被引量:22
标识
DOI:10.1002/smll.202203838
摘要
To solve surface carrier recombination and sluggish water oxidation kinetics of hematite (α-Fe2 O3 ) photoanodes, herein, an attractive surface modification strategy is developed to successively deposit ultrathin CoOx overlayer and Ni single atoms on titanium (Ti)-doped α-Fe2 O3 (Ti:Fe2 O3 ) nanorods through a two-step atomic layer deposition (ALD) and photodeposition process. The collaborative decoration of ultrathin CoOx overlayer and Ni single atoms can trigger a big boost in photo-electrochemical (PEC) performance for water splitting over the obtained Ti:Fe2 O3 /CoOx /Ni photoanode, with the photocurrent density reaching 1.05 mA cm-2 at 1.23 V vs. reversible hydrogen electrode (RHE), more than three times that of Ti:Fe2 O3 (0.326 mA cm-2 ). Electrochemical and electronic investigations reveal that the surface passivation effect of ultrathin CoOx overlayer can reduce surface carrier recombination, while the catalysis effect of Ni single atoms can accelerate water oxidation kinetics. Moreover, theoretical calculations evidence that the synergy of ultrathin CoOx overlayer and Ni single atoms can lower the adsorption free energy of OH* intermediates and relieve the potential-determining step (PDS) for oxygen evolution reaction (OER). This work provides an exemplary modification through rational engineering of surface electrochemical and electronic properties for the improved PEC performances, which can be applied in other metal oxide semiconductors as well.
科研通智能强力驱动
Strongly Powered by AbleSci AI