Dissimilate-and-assimilate strategy for video anomaly detection and localization

异常检测 计算机科学 人工智能 模式识别(心理学) 一般化 帧(网络) 特征(语言学) 正态性 异常(物理) 数学 统计 物理 数学分析 哲学 电信 语言学 凝聚态物理
作者
Wooyeol Hyun,Woo Hyun Nam,Seong–Whan Lee
出处
期刊:Neurocomputing [Elsevier]
卷期号:522: 203-213 被引量:5
标识
DOI:10.1016/j.neucom.2022.12.026
摘要

Unsupervised anomaly detection in videos is a challenging task owing to the remarkable generalization capacity of the deep convolutional autoencoders and the complex nature of anomalous events. In this study, we introduce a dissimilate-and-assimilate strategy to learn essential patterns of multilevel latent representations of normal spatial and temporal information. To obtain the core normality of the appearance and motion samples over multiple layers of the network, our proposed method diversifies the latent patterns of normal spatial and temporal data to make the out-of-distribution samples discrete (dissimilation) and integrates the latent features of two different samples into a single sample using a feature attention mechanism for robust optimization (assimilation). Based on the learned representations, the network generates convincing predictions of the normal frame, even if it receives abnormal samples after training. That is, the anomalous objects in a series of frames can be detected with significant reconstruction errors, thus leading to better detection and precise localization performance. To verify the effectiveness of the proposed method, we quantify the preciseness of anomaly localization using the outside-inside error ratio along with the traditional area under the curve (AUC) metric to measure the detection performance on the USCD Pedestrian 2, CHUK Avenue and ShanghaiTech Campus datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咱不吃葱完成签到,获得积分10
1秒前
3秒前
雯雯子发布了新的文献求助10
4秒前
赘婿应助谦让的小姜采纳,获得10
4秒前
大个应助木子niko采纳,获得10
4秒前
LIKO发布了新的文献求助20
7秒前
7秒前
咚咚完成签到,获得积分10
8秒前
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
赘婿应助ZY采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
浅尝离白应助科研通管家采纳,获得30
8秒前
Hello应助科研通管家采纳,获得30
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
丘比特应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
浅尝离白应助科研通管家采纳,获得30
9秒前
无花果应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
李健应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得30
9秒前
今后应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得30
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
NEM嬛嬛驾到完成签到,获得积分10
10秒前
木仔仔完成签到,获得积分10
11秒前
sje发布了新的文献求助10
12秒前
lch完成签到,获得积分10
12秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138252
求助须知:如何正确求助?哪些是违规求助? 2789208
关于积分的说明 7790538
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300565
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601053