Data-Centric Client Selection for Federated Learning Over Distributed Edge Networks

计算机科学 掷骰子 GSM演进的增强数据速率 工作量 边缘设备 选择(遗传算法) 分布式计算 计算 机器学习 人工智能 云计算 算法 几何学 数学 操作系统
作者
Rituparna Saha,Sudip Misra,Aishwariya Chakraborty,Chandranath Chatterjee,Pallav Kumar Deb
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 675-686 被引量:11
标识
DOI:10.1109/tpds.2022.3217271
摘要

This work presents an efficient data-centric client selection approach, named DICE, to enable federated learning (FL) over distributed edge networks. Prior research focused on assessing the computation and communication ability of the client devices for selection in FL. On-device data quality, in terms of data volume and heterogeneity, across these distributed devices is largely overlooked. The obvious outcome is the selection of an improper subset of clients with poor-quallity data, which inevitably results in an inefficient trained model. With an aim to address this problem, in this work, we design DICE which prioritizes the data quality of the client devices in the selection phase, in addition to their computation and communication abilities, to improve the accuracy of FL. Additionally, in DICE, we introduce the assistance of vicinal edge devices to account for the lack of computation or communication abilities in certain devices without violating the privacy-preserving guarantees of FL. Towards this aim, we propose a scheme to decide the optimal edge device, in terms of latency and workload, to be selected as the helper device. The experimental results show that DICE improves convergence speed for a given level of model accuracy. Further, the simulation results show that DICE reduces delay by at least 16%, energy consumption by at least 17%, and packet loss by at least 55% compared to the existing benchmarks while prioritizing the on-device data quality across clients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贤惠的早晨完成签到 ,获得积分10
刚刚
六月毕业发布了新的文献求助10
刚刚
科研通AI5应助平常的毛豆采纳,获得10
刚刚
韦颖完成签到,获得积分20
2秒前
沉默的冬寒完成签到 ,获得积分10
3秒前
海科科给海科科的求助进行了留言
3秒前
迅速斑马完成签到,获得积分10
3秒前
百合完成签到 ,获得积分10
3秒前
wanghua完成签到,获得积分10
3秒前
Hello应助13679165979采纳,获得10
4秒前
ni发布了新的文献求助10
6秒前
隐形曼青应助敏感的芷采纳,获得10
6秒前
ybb完成签到,获得积分10
9秒前
9秒前
快乐的伟诚完成签到,获得积分10
11秒前
搜集达人应助大胆夜绿采纳,获得10
11秒前
11秒前
12秒前
辛勤的无血完成签到,获得积分10
15秒前
16秒前
rookie完成签到,获得积分10
16秒前
16秒前
ni完成签到,获得积分10
17秒前
step_stone给step_stone的求助进行了留言
18秒前
18秒前
荒野星辰发布了新的文献求助10
19秒前
敏感的芷完成签到,获得积分20
19秒前
21秒前
21秒前
22秒前
luoshi应助沐风采纳,获得20
22秒前
安南完成签到,获得积分10
22秒前
香蕉冬云完成签到 ,获得积分10
23秒前
自信安荷发布了新的文献求助200
23秒前
鱼雷发布了新的文献求助10
24秒前
兔子发布了新的文献求助10
24秒前
24秒前
田様应助coffee采纳,获得10
25秒前
25秒前
专注鼠标完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824