Data-Centric Client Selection for Federated Learning Over Distributed Edge Networks

计算机科学 掷骰子 GSM演进的增强数据速率 工作量 边缘设备 选择(遗传算法) 分布式计算 计算 机器学习 人工智能 云计算 算法 几何学 数学 操作系统
作者
Rituparna Saha,Sudip Misra,Aishwariya Chakraborty,Chandranath Chatterjee,Pallav Kumar Deb
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 675-686 被引量:24
标识
DOI:10.1109/tpds.2022.3217271
摘要

This work presents an efficient data-centric client selection approach, named DICE, to enable federated learning (FL) over distributed edge networks. Prior research focused on assessing the computation and communication ability of the client devices for selection in FL. On-device data quality, in terms of data volume and heterogeneity, across these distributed devices is largely overlooked. The obvious outcome is the selection of an improper subset of clients with poor-quallity data, which inevitably results in an inefficient trained model. With an aim to address this problem, in this work, we design DICE which prioritizes the data quality of the client devices in the selection phase, in addition to their computation and communication abilities, to improve the accuracy of FL. Additionally, in DICE, we introduce the assistance of vicinal edge devices to account for the lack of computation or communication abilities in certain devices without violating the privacy-preserving guarantees of FL. Towards this aim, we propose a scheme to decide the optimal edge device, in terms of latency and workload, to be selected as the helper device. The experimental results show that DICE improves convergence speed for a given level of model accuracy. Further, the simulation results show that DICE reduces delay by at least 16%, energy consumption by at least 17%, and packet loss by at least 55% compared to the existing benchmarks while prioritizing the on-device data quality across clients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
当时只道是寻常完成签到,获得积分10
2秒前
2秒前
PCEEN发布了新的文献求助10
4秒前
6秒前
虚幻羊发布了新的文献求助10
6秒前
7秒前
Akim应助宫野珏采纳,获得10
9秒前
小白鼠完成签到,获得积分10
9秒前
虚幻羊完成签到,获得积分10
10秒前
10秒前
南宫初柒完成签到 ,获得积分10
10秒前
冷靖完成签到,获得积分10
11秒前
liu完成签到,获得积分10
11秒前
12秒前
xionghaizi完成签到,获得积分10
13秒前
yahonyoyoyo发布了新的文献求助10
13秒前
冷靖发布了新的文献求助10
14秒前
新威宝贝完成签到,获得积分10
18秒前
利物鸟贝拉完成签到,获得积分10
19秒前
明天见完成签到,获得积分20
21秒前
23秒前
康谨完成签到 ,获得积分10
26秒前
华仔应助明天见采纳,获得10
26秒前
chen应助淡然菲音采纳,获得10
26秒前
疯狂的翠梅完成签到,获得积分10
27秒前
mochi完成签到,获得积分10
27秒前
28秒前
29秒前
打打应助李李李采纳,获得10
30秒前
温冰雪应助大秋哥哈拉少采纳,获得10
30秒前
打打应助吕轩达采纳,获得10
30秒前
潇潇完成签到 ,获得积分10
33秒前
领导范儿应助PCEEN采纳,获得10
33秒前
爆米花应助畅快代灵采纳,获得10
33秒前
38秒前
39秒前
40秒前
酷波er应助AiX-zzzzz采纳,获得10
41秒前
Jason-1024完成签到,获得积分10
42秒前
LZW关闭了LZW文献求助
42秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951007
求助须知:如何正确求助?哪些是违规求助? 3496402
关于积分的说明 11081862
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 801003