Data-Centric Client Selection for Federated Learning Over Distributed Edge Networks

计算机科学 掷骰子 GSM演进的增强数据速率 工作量 边缘设备 选择(遗传算法) 分布式计算 计算 机器学习 人工智能 云计算 算法 几何学 数学 操作系统
作者
Rituparna Saha,Sudip Misra,Aishwariya Chakraborty,Chandranath Chatterjee,Pallav Kumar Deb
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (2): 675-686 被引量:24
标识
DOI:10.1109/tpds.2022.3217271
摘要

This work presents an efficient data-centric client selection approach, named DICE, to enable federated learning (FL) over distributed edge networks. Prior research focused on assessing the computation and communication ability of the client devices for selection in FL. On-device data quality, in terms of data volume and heterogeneity, across these distributed devices is largely overlooked. The obvious outcome is the selection of an improper subset of clients with poor-quallity data, which inevitably results in an inefficient trained model. With an aim to address this problem, in this work, we design DICE which prioritizes the data quality of the client devices in the selection phase, in addition to their computation and communication abilities, to improve the accuracy of FL. Additionally, in DICE, we introduce the assistance of vicinal edge devices to account for the lack of computation or communication abilities in certain devices without violating the privacy-preserving guarantees of FL. Towards this aim, we propose a scheme to decide the optimal edge device, in terms of latency and workload, to be selected as the helper device. The experimental results show that DICE improves convergence speed for a given level of model accuracy. Further, the simulation results show that DICE reduces delay by at least 16%, energy consumption by at least 17%, and packet loss by at least 55% compared to the existing benchmarks while prioritizing the on-device data quality across clients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zymiao完成签到,获得积分20
刚刚
1秒前
2秒前
2秒前
许子健发布了新的文献求助10
2秒前
3秒前
孤独依波发布了新的文献求助20
3秒前
3秒前
觅夏发布了新的文献求助10
4秒前
爆米花应助梓榆采纳,获得10
4秒前
Lucas应助浮浮世世采纳,获得10
6秒前
baobao发布了新的文献求助10
6秒前
6秒前
carpybala发布了新的文献求助10
7秒前
球球发布了新的文献求助10
7秒前
丘比特应助ZHANGMANLI0422采纳,获得10
7秒前
小郑完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
WTT完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
Emma完成签到,获得积分10
9秒前
Hh完成签到,获得积分10
10秒前
梧桐树完成签到,获得积分10
10秒前
典雅的思菱完成签到,获得积分10
10秒前
10秒前
成就的沛菡完成签到 ,获得积分10
10秒前
ysf完成签到,获得积分10
10秒前
doubleshake发布了新的文献求助10
10秒前
鱿鱼完成签到,获得积分10
11秒前
11秒前
KingWong发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
12秒前
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646