Neural Architecture Search as Multiobjective Optimization Benchmarks: Problem Formulation and Performance Assessment

计算机科学 水准点(测量) 人工智能 管道(软件) 推论 多目标优化 深度学习 最优化问题 机器学习 建筑 进化算法 人工神经网络 网络体系结构 数学优化 计算机工程 算法 数学 艺术 视觉艺术 计算机安全 大地测量学 程序设计语言 地理
作者
Zhichao Lu,Ran Cheng,Yaochu Jin,Kay Chen Tan,Kalyanmoy Deb
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (2): 323-337 被引量:67
标识
DOI:10.1109/tevc.2022.3233364
摘要

The ongoing advancements in network architecture design have led to remarkable achievements in deep learning across various challenging computer vision tasks. Meanwhile, the development of neural architecture search (NAS) has provided promising approaches to automating the design of network architectures for lower prediction error. Recently, the emerging application scenarios of deep learning (e.g., autonomous driving) have raised higher demands for network architectures considering multiple design criteria: number of parameters/weights, number of floating-point operations, inference latency, among others. From an optimization point of view, the NAS tasks involving multiple design criteria are intrinsically multiobjective optimization problems; hence, it is reasonable to adopt evolutionary multiobjective optimization (EMO) algorithms for tackling them. Nonetheless, there is still a clear gap confining the related research along this pathway: on the one hand, there is a lack of a general problem formulation of NAS tasks from an optimization point of view; on the other hand, there are challenges in conducting benchmark assessments of EMO algorithms on NAS tasks. To bridge the gap: 1) we formulate NAS tasks into general multiobjective optimization problems and analyze the complex characteristics from an optimization point of view; 2) we present an end-to-end pipeline, dubbed EvoXBench , to generate benchmark test problems for EMO algorithms to run efficiently—without the requirement of GPUs or Pytorch/Tensorflow; and 3) we instantiate two test suites comprehensively covering two datasets, seven search spaces, and three hardware devices, involving up to eight objectives. Based on the above, we validate the proposed test suites using six representative EMO algorithms and provide some empirical analyses. The code of EvoXBench is available at https://github.com/EMI-Group/EvoXBench .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
carbon-dots发布了新的文献求助10
1秒前
2秒前
2秒前
cdercder应助Foremelon采纳,获得20
3秒前
毕业就集采的苦命人完成签到,获得积分10
4秒前
Xiang发布了新的文献求助10
4秒前
4秒前
Akim应助nehsiac采纳,获得10
5秒前
6秒前
9秒前
隐形荟发布了新的文献求助10
10秒前
Jasper应助严笑容采纳,获得30
10秒前
田様应助854fycchjh采纳,获得10
11秒前
宇_y246完成签到,获得积分20
11秒前
12秒前
粱如波发布了新的文献求助10
13秒前
14秒前
高高的山兰完成签到 ,获得积分10
15秒前
宇_y246发布了新的文献求助10
16秒前
Terahertz完成签到 ,获得积分10
18秒前
从心从心完成签到,获得积分10
18秒前
mauve完成签到 ,获得积分10
22秒前
22秒前
闫132完成签到,获得积分10
23秒前
粱如波完成签到,获得积分10
24秒前
Andrew完成签到,获得积分10
25秒前
25秒前
26秒前
无花果应助陈倩采纳,获得10
28秒前
西安浴日光能赵炜完成签到,获得积分10
29秒前
Liuhui完成签到 ,获得积分10
29秒前
30秒前
临天下完成签到,获得积分10
30秒前
aser发布了新的文献求助10
30秒前
31秒前
32秒前
痴情的博超应助cc采纳,获得10
33秒前
34秒前
宣孤菱发布了新的文献求助10
35秒前
隐形荟发布了新的文献求助10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281244
关于积分的说明 10023902
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644908
邀请新用户注册赠送积分活动 782421
科研通“疑难数据库(出版商)”最低求助积分说明 749792