Distinguishing multiple primary lung cancers from intrapulmonary metastasis using CT-based radiomics

无线电技术 医学 接收机工作特性 肺癌 放射科 核医学 肿瘤科 内科学
作者
Mei Huang,Qinmei Xu,Mu Zhou,Xinyu Li,Wenhui Lv,Changsheng Zhou,Ren Wu,Zhen Zhou,Xingzhi Chen,Chencui Huang,Guangming Lu
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:160: 110671-110671 被引量:6
标识
DOI:10.1016/j.ejrad.2022.110671
摘要

To develop CT-based radiomics models that can efficiently distinguish between multiple primary lung cancers (MPLCs) and intrapulmonary metastasis (IPMs).This retrospective study included 127 patients with 254 lung tumors pathologically proved as MPLCs or IPMs between May 2009 and January 2020. Radiomics features of lung tumors were extracted from baseline CT scans. Particularly, we incorporated tumor-focused, refined radiomics by calculating relative radiomics differences from paired tumors of individual patients. We applied the L1-norm regularization and analysis of variance to select informative radiomics features for constructing radiomics model (RM) and refined radiomics model (RRM). The performance was assessed by the area under the receiver operating characteristic curve (AUC-ROC). The two radiomics models were compared with the clinical-CT model (CCM, including clinical and CT semantic features). We incorporated both radiomics features to construct fusion model1 (FM1). We also, build fusion model2 (FM2) by combing both radiomics, clinical and CT semantic features. The performance of the FM1 and FM2 were further compared with that of the RRM.On the validation set, the RM achieved an AUC of 0.857. The RRM demonstrated improved performance (validation set AUC, 0.870) than the RM, and showed significant differences compared with the CCM (validation set AUC, 0.782). Fusion models further led prediction performance (validation set AUC, FM1:0.885; FM2:0.889). There were no significant differences among the performance of the FM1, the FM2 and the RRM.The CT-based radiomics models presented good performance on the discrimination between MPLCs and IPMs, demonstrating the potential for early diagnosis and treatment guidance for MPLCs and IPMs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乔治韦斯莱完成签到 ,获得积分10
1秒前
2秒前
2秒前
refrain完成签到,获得积分10
3秒前
喻语儿发布了新的文献求助10
5秒前
kiddos3e完成签到,获得积分10
5秒前
噗噜噜发布了新的文献求助30
6秒前
6秒前
hlx发布了新的文献求助10
6秒前
lewis17完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
领导范儿应助Kam采纳,获得10
15秒前
郑小发布了新的文献求助30
18秒前
19秒前
和谐的柠檬完成签到,获得积分10
19秒前
123完成签到 ,获得积分10
21秒前
饱满冷卉完成签到,获得积分10
23秒前
24秒前
24秒前
猪猪想要平静的生活完成签到,获得积分10
24秒前
斯文败类应助噗噜噜采纳,获得30
24秒前
CAOHOU举报贝尔求助涉嫌违规
27秒前
zqlxueli完成签到 ,获得积分10
27秒前
orixero应助jrzsy采纳,获得10
29秒前
Hello应助水蜜桃幽灵采纳,获得10
30秒前
XiaoMing完成签到,获得积分10
30秒前
陈展峰发布了新的文献求助10
30秒前
延胡索完成签到,获得积分10
31秒前
SYLH应助sresr采纳,获得10
32秒前
叶子完成签到,获得积分10
35秒前
windmill完成签到,获得积分10
36秒前
37秒前
39秒前
123发布了新的文献求助20
39秒前
大模型应助五山第一院士采纳,获得10
40秒前
zcm1999完成签到,获得积分10
41秒前
之道完成签到,获得积分10
41秒前
yyfsummer完成签到,获得积分10
43秒前
ei123完成签到,获得积分10
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124544
捐赠科研通 3237326
什么是DOI,文献DOI怎么找? 1789102
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844