Hydrocarbon production dynamics forecasting using machine learning: A state-of-the-art review

计算机科学 人工智能 人工神经网络 机器学习 深度学习 生产(经济) 时间序列 大数据 数据挖掘 宏观经济学 经济
作者
Bin Liang,Jiang Liu,Junyu You,Jin Jia,Yi Pan,Hoonyoung Jeong
出处
期刊:Fuel [Elsevier BV]
卷期号:337: 127067-127067 被引量:20
标识
DOI:10.1016/j.fuel.2022.127067
摘要

Accurate prediction of hydrocarbon production is crucial for the oil and gas industry. However, the strong heterogeneity of underground formation, the inconsistency in oil–gas-water distribution, and the complex flow mechanisms make hydrocarbon production forecasting (HPF) difficult, which leads to a high level of uncertainty in the prediction results. The explosion of machine learning (ML) methodologies that are capable of analyzing big data shed new light on HPF using production data. In this article, an in-depth review is provided regarding HPF using ML methodologies. Firstly, the merits and drawbacks of traditional HPF methods are analyzed and summarized. Then, the applications of ML algorithms in HPF are reviewed in detail, especially concentrating on artificial neural network, support vector machine, and ensemble learning. For each algorithm, the basic theory and its variants are first introduced, and its applications in HPF are comprehensively demonstrated subsequently. Finally, this article presents the challenge and prospects of machine-learning-based HPF. Sophisticated ML proxy models can be constructed and employed to deal with an extended type of input data such that improving the efficacy of data utilization. On the other hand, deep learning models designed to handle time-series data can gain more attention. Modeling approaches for multivariate time-series hydrocarbon production data using deep neural networks with similar functionality to LSTM may lead to more accurate and computationally efficient production forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仰山雪完成签到 ,获得积分10
1秒前
mattcheaw发布了新的文献求助10
1秒前
小秋完成签到,获得积分10
2秒前
嘿嘿嘿完成签到,获得积分10
2秒前
Jeneration发布了新的文献求助30
2秒前
qq发布了新的文献求助10
2秒前
2秒前
kong完成签到,获得积分10
3秒前
捡垃圾的小破烂完成签到,获得积分10
3秒前
善学以致用应助鸢尾采纳,获得10
5秒前
小白鼠完成签到,获得积分20
5秒前
幽默的凡发布了新的文献求助10
6秒前
司空悒发布了新的文献求助10
6秒前
7秒前
7秒前
Aurora的努力日记完成签到,获得积分10
7秒前
相对沉默完成签到,获得积分10
7秒前
牛的不low的完成签到,获得积分10
8秒前
方勇飞完成签到,获得积分10
8秒前
9秒前
科研通AI5应助苏里南采纳,获得10
9秒前
9秒前
hahaha完成签到 ,获得积分10
9秒前
Jiang完成签到,获得积分10
9秒前
zc完成签到,获得积分10
10秒前
11秒前
星辰大海应助momo采纳,获得10
12秒前
PiPiBoQAQ完成签到,获得积分10
12秒前
jonghuang发布了新的文献求助10
12秒前
12秒前
不吃香菜的爆炸小飞鱼完成签到 ,获得积分10
13秒前
良璞发布了新的文献求助10
13秒前
我是老大应助qq采纳,获得10
13秒前
友好凤发布了新的文献求助10
14秒前
14秒前
陶醉指甲油完成签到,获得积分10
14秒前
文艺谷蓝发布了新的文献求助10
15秒前
16秒前
传奇3应助hyju采纳,获得10
17秒前
18秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3765463
求助须知:如何正确求助?哪些是违规求助? 3309974
关于积分的说明 10152973
捐赠科研通 3025346
什么是DOI,文献DOI怎么找? 1660499
邀请新用户注册赠送积分活动 793353
科研通“疑难数据库(出版商)”最低求助积分说明 755565