Hydrocarbon production dynamics forecasting using machine learning: A state-of-the-art review

计算机科学 人工智能 人工神经网络 机器学习 深度学习 生产(经济) 时间序列 大数据 数据挖掘 宏观经济学 经济
作者
Bin Liang,Jiang Liu,Junyu You,Jin Jia,Yi Pan,Hoonyoung Jeong
出处
期刊:Fuel [Elsevier]
卷期号:337: 127067-127067 被引量:20
标识
DOI:10.1016/j.fuel.2022.127067
摘要

Accurate prediction of hydrocarbon production is crucial for the oil and gas industry. However, the strong heterogeneity of underground formation, the inconsistency in oil–gas-water distribution, and the complex flow mechanisms make hydrocarbon production forecasting (HPF) difficult, which leads to a high level of uncertainty in the prediction results. The explosion of machine learning (ML) methodologies that are capable of analyzing big data shed new light on HPF using production data. In this article, an in-depth review is provided regarding HPF using ML methodologies. Firstly, the merits and drawbacks of traditional HPF methods are analyzed and summarized. Then, the applications of ML algorithms in HPF are reviewed in detail, especially concentrating on artificial neural network, support vector machine, and ensemble learning. For each algorithm, the basic theory and its variants are first introduced, and its applications in HPF are comprehensively demonstrated subsequently. Finally, this article presents the challenge and prospects of machine-learning-based HPF. Sophisticated ML proxy models can be constructed and employed to deal with an extended type of input data such that improving the efficacy of data utilization. On the other hand, deep learning models designed to handle time-series data can gain more attention. Modeling approaches for multivariate time-series hydrocarbon production data using deep neural networks with similar functionality to LSTM may lead to more accurate and computationally efficient production forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ShirlyD完成签到,获得积分20
1秒前
i3utter完成签到,获得积分10
2秒前
4秒前
4秒前
周思彤完成签到,获得积分10
5秒前
7秒前
11秒前
12秒前
zfs发布了新的文献求助10
12秒前
打打应助火星上的宝马采纳,获得10
13秒前
夕夜完成签到,获得积分10
16秒前
漠北完成签到,获得积分10
16秒前
FU发布了新的文献求助10
18秒前
19秒前
xxfsx应助dique3hao采纳,获得10
19秒前
19秒前
FashionBoy应助fankun采纳,获得10
19秒前
芝士椰果完成签到,获得积分10
20秒前
外向的导师完成签到,获得积分10
21秒前
李健的粉丝团团长应助lulu采纳,获得30
22秒前
失眠静珊完成签到,获得积分10
22秒前
细心香烟完成签到 ,获得积分10
23秒前
25秒前
von17发布了新的文献求助10
25秒前
pomfret发布了新的文献求助10
25秒前
JamesPei应助oxs采纳,获得10
25秒前
忧虑的慕山完成签到,获得积分10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
小蘑菇应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
Zx_1993应助科研通管家采纳,获得20
26秒前
领导范儿应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
26秒前
香蕉觅云应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
27秒前
打打应助科研通管家采纳,获得10
27秒前
啤啤发布了新的文献求助10
27秒前
完美世界应助科研通管家采纳,获得10
27秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5456765
求助须知:如何正确求助?哪些是违规求助? 4563374
关于积分的说明 14289703
捐赠科研通 4488001
什么是DOI,文献DOI怎么找? 2458139
邀请新用户注册赠送积分活动 1448473
关于科研通互助平台的介绍 1424128