Hydrocarbon production dynamics forecasting using machine learning: A state-of-the-art review

计算机科学 人工智能 人工神经网络 机器学习 深度学习 生产(经济) 时间序列 大数据 数据挖掘 宏观经济学 经济
作者
Bin Liang,Jiang Liu,Junyu You,Jin Jia,Yi Pan,Hoonyoung Jeong
出处
期刊:Fuel [Elsevier]
卷期号:337: 127067-127067 被引量:20
标识
DOI:10.1016/j.fuel.2022.127067
摘要

Accurate prediction of hydrocarbon production is crucial for the oil and gas industry. However, the strong heterogeneity of underground formation, the inconsistency in oil–gas-water distribution, and the complex flow mechanisms make hydrocarbon production forecasting (HPF) difficult, which leads to a high level of uncertainty in the prediction results. The explosion of machine learning (ML) methodologies that are capable of analyzing big data shed new light on HPF using production data. In this article, an in-depth review is provided regarding HPF using ML methodologies. Firstly, the merits and drawbacks of traditional HPF methods are analyzed and summarized. Then, the applications of ML algorithms in HPF are reviewed in detail, especially concentrating on artificial neural network, support vector machine, and ensemble learning. For each algorithm, the basic theory and its variants are first introduced, and its applications in HPF are comprehensively demonstrated subsequently. Finally, this article presents the challenge and prospects of machine-learning-based HPF. Sophisticated ML proxy models can be constructed and employed to deal with an extended type of input data such that improving the efficacy of data utilization. On the other hand, deep learning models designed to handle time-series data can gain more attention. Modeling approaches for multivariate time-series hydrocarbon production data using deep neural networks with similar functionality to LSTM may lead to more accurate and computationally efficient production forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
1秒前
桐桐应助101采纳,获得30
1秒前
1秒前
1秒前
yu发布了新的文献求助10
2秒前
LC完成签到,获得积分10
2秒前
ZhouZhou发布了新的文献求助10
2秒前
2秒前
kiide完成签到,获得积分10
3秒前
4秒前
5秒前
wangli发布了新的文献求助10
6秒前
ppprotein发布了新的文献求助10
6秒前
zx发布了新的文献求助10
7秒前
上官若男应助阔达的冷霜采纳,获得10
7秒前
Owen应助不冬眠采纳,获得10
7秒前
SCL发布了新的文献求助10
7秒前
研友_nPoXoL发布了新的文献求助10
7秒前
8秒前
8秒前
koi完成签到,获得积分20
9秒前
FashionBoy应助小p采纳,获得30
9秒前
dmm完成签到,获得积分10
9秒前
ZHG完成签到,获得积分10
10秒前
Q11发布了新的文献求助10
10秒前
希望天下0贩的0应助虾虾采纳,获得10
10秒前
希望天下0贩的0应助煜琪采纳,获得10
11秒前
搜集达人应助复方蛋酥卷采纳,获得10
12秒前
Hello应助wangli采纳,获得10
12秒前
RONG发布了新的文献求助10
13秒前
14秒前
斯文败类应助张天成采纳,获得10
14秒前
TAN完成签到 ,获得积分10
16秒前
16秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
吴景轩发布了新的文献求助10
19秒前
19秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492432
求助须知:如何正确求助?哪些是违规求助? 4590523
关于积分的说明 14430879
捐赠科研通 4522998
什么是DOI,文献DOI怎么找? 2478115
邀请新用户注册赠送积分活动 1463158
关于科研通互助平台的介绍 1435830