Hydrocarbon production dynamics forecasting using machine learning: A state-of-the-art review

计算机科学 人工智能 人工神经网络 机器学习 深度学习 生产(经济) 时间序列 大数据 数据挖掘 宏观经济学 经济
作者
Bin Liang,Jiang Liu,Junyu You,Jin Jia,Yi Pan,Hoonyoung Jeong
出处
期刊:Fuel [Elsevier]
卷期号:337: 127067-127067 被引量:20
标识
DOI:10.1016/j.fuel.2022.127067
摘要

Accurate prediction of hydrocarbon production is crucial for the oil and gas industry. However, the strong heterogeneity of underground formation, the inconsistency in oil–gas-water distribution, and the complex flow mechanisms make hydrocarbon production forecasting (HPF) difficult, which leads to a high level of uncertainty in the prediction results. The explosion of machine learning (ML) methodologies that are capable of analyzing big data shed new light on HPF using production data. In this article, an in-depth review is provided regarding HPF using ML methodologies. Firstly, the merits and drawbacks of traditional HPF methods are analyzed and summarized. Then, the applications of ML algorithms in HPF are reviewed in detail, especially concentrating on artificial neural network, support vector machine, and ensemble learning. For each algorithm, the basic theory and its variants are first introduced, and its applications in HPF are comprehensively demonstrated subsequently. Finally, this article presents the challenge and prospects of machine-learning-based HPF. Sophisticated ML proxy models can be constructed and employed to deal with an extended type of input data such that improving the efficacy of data utilization. On the other hand, deep learning models designed to handle time-series data can gain more attention. Modeling approaches for multivariate time-series hydrocarbon production data using deep neural networks with similar functionality to LSTM may lead to more accurate and computationally efficient production forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月月鸟发布了新的文献求助10
刚刚
1秒前
wq完成签到,获得积分10
2秒前
李爱国应助hudiefeifei306采纳,获得10
2秒前
2秒前
2秒前
开朗尔蓝完成签到 ,获得积分10
3秒前
yulong完成签到 ,获得积分10
3秒前
Ava应助兰先生采纳,获得10
4秒前
喜悦的凌柏完成签到 ,获得积分20
4秒前
陶醉向松关注了科研通微信公众号
5秒前
欣喜乐安发布了新的文献求助10
5秒前
6秒前
李爱国应助66采纳,获得30
6秒前
6秒前
6秒前
7秒前
郑鑫完成签到,获得积分10
8秒前
qphys完成签到,获得积分10
8秒前
9秒前
霸气映之发布了新的文献求助10
11秒前
乾乾完成签到,获得积分10
11秒前
十字路口完成签到 ,获得积分10
12秒前
小二郎应助坚定不移采纳,获得10
12秒前
Milesma完成签到 ,获得积分10
12秒前
爆米花应助海岸线采纳,获得10
13秒前
小青椒应助月月鸟采纳,获得20
13秒前
领导范儿应助跳跃尔容采纳,获得10
13秒前
14秒前
成就的雪莲完成签到,获得积分10
15秒前
爱喝蜜桃乌龙完成签到,获得积分10
16秒前
汉堡国王完成签到,获得积分10
16秒前
雾眠气泡水完成签到,获得积分20
17秒前
17秒前
18秒前
todayisirene完成签到,获得积分10
18秒前
我要circulation完成签到,获得积分10
19秒前
dandelion完成签到,获得积分10
20秒前
研友_VZG7GZ应助朱润玉采纳,获得10
20秒前
22秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379465
求助须知:如何正确求助?哪些是违规求助? 4503814
关于积分的说明 14016664
捐赠科研通 4412588
什么是DOI,文献DOI怎么找? 2423880
邀请新用户注册赠送积分活动 1416751
关于科研通互助平台的介绍 1394290