Hydrocarbon production dynamics forecasting using machine learning: A state-of-the-art review

计算机科学 人工智能 人工神经网络 机器学习 深度学习 生产(经济) 时间序列 大数据 数据挖掘 宏观经济学 经济
作者
Bin Liang,Jiang Liu,Junyu You,Jin Jia,Yi Pan,Hoonyoung Jeong
出处
期刊:Fuel [Elsevier BV]
卷期号:337: 127067-127067 被引量:20
标识
DOI:10.1016/j.fuel.2022.127067
摘要

Accurate prediction of hydrocarbon production is crucial for the oil and gas industry. However, the strong heterogeneity of underground formation, the inconsistency in oil–gas-water distribution, and the complex flow mechanisms make hydrocarbon production forecasting (HPF) difficult, which leads to a high level of uncertainty in the prediction results. The explosion of machine learning (ML) methodologies that are capable of analyzing big data shed new light on HPF using production data. In this article, an in-depth review is provided regarding HPF using ML methodologies. Firstly, the merits and drawbacks of traditional HPF methods are analyzed and summarized. Then, the applications of ML algorithms in HPF are reviewed in detail, especially concentrating on artificial neural network, support vector machine, and ensemble learning. For each algorithm, the basic theory and its variants are first introduced, and its applications in HPF are comprehensively demonstrated subsequently. Finally, this article presents the challenge and prospects of machine-learning-based HPF. Sophisticated ML proxy models can be constructed and employed to deal with an extended type of input data such that improving the efficacy of data utilization. On the other hand, deep learning models designed to handle time-series data can gain more attention. Modeling approaches for multivariate time-series hydrocarbon production data using deep neural networks with similar functionality to LSTM may lead to more accurate and computationally efficient production forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柳絮完成签到,获得积分20
1秒前
lll完成签到,获得积分10
1秒前
sdl完成签到,获得积分10
1秒前
Orange应助孟婆的碗采纳,获得10
2秒前
zhangmy1989发布了新的文献求助30
2秒前
2秒前
清秀的不言完成签到 ,获得积分10
2秒前
杂化轨道退役研究员完成签到,获得积分10
2秒前
FashionBoy应助tanglu采纳,获得10
3秒前
4秒前
闪闪如南完成签到,获得积分10
5秒前
wjxcl完成签到,获得积分10
6秒前
6秒前
6秒前
12233完成签到,获得积分10
7秒前
7秒前
洪武完成签到,获得积分20
7秒前
8秒前
Yuantian发布了新的文献求助10
9秒前
传奇3应助浪花淘尽英雄采纳,获得10
10秒前
流川枫完成签到,获得积分10
10秒前
赘婿应助leo采纳,获得10
10秒前
追寻夏烟完成签到 ,获得积分10
11秒前
闪闪寒云完成签到 ,获得积分10
11秒前
13633501455完成签到 ,获得积分10
12秒前
阿里完成签到,获得积分10
12秒前
蓁蓁发布了新的文献求助10
13秒前
科研通AI5应助加百莉采纳,获得10
13秒前
WELXCNK完成签到,获得积分10
14秒前
GG波波完成签到,获得积分10
15秒前
susu完成签到 ,获得积分10
15秒前
16秒前
16秒前
海阔天空发布了新的文献求助10
17秒前
Loooong发布了新的文献求助10
18秒前
云影箫羽完成签到 ,获得积分10
19秒前
19秒前
顾矜应助gougoutu采纳,获得10
20秒前
生生完成签到,获得积分10
20秒前
温暖芸发布了新的文献求助10
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038569
求助须知:如何正确求助?哪些是违规求助? 3576279
关于积分的说明 11374944
捐赠科研通 3305979
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815048