Hydrocarbon production dynamics forecasting using machine learning: A state-of-the-art review

计算机科学 人工智能 人工神经网络 机器学习 深度学习 生产(经济) 时间序列 大数据 数据挖掘 宏观经济学 经济
作者
Bin Liang,Jiang Liu,Junyu You,Jin Jia,Yi Pan,Hoonyoung Jeong
出处
期刊:Fuel [Elsevier BV]
卷期号:337: 127067-127067 被引量:20
标识
DOI:10.1016/j.fuel.2022.127067
摘要

Accurate prediction of hydrocarbon production is crucial for the oil and gas industry. However, the strong heterogeneity of underground formation, the inconsistency in oil–gas-water distribution, and the complex flow mechanisms make hydrocarbon production forecasting (HPF) difficult, which leads to a high level of uncertainty in the prediction results. The explosion of machine learning (ML) methodologies that are capable of analyzing big data shed new light on HPF using production data. In this article, an in-depth review is provided regarding HPF using ML methodologies. Firstly, the merits and drawbacks of traditional HPF methods are analyzed and summarized. Then, the applications of ML algorithms in HPF are reviewed in detail, especially concentrating on artificial neural network, support vector machine, and ensemble learning. For each algorithm, the basic theory and its variants are first introduced, and its applications in HPF are comprehensively demonstrated subsequently. Finally, this article presents the challenge and prospects of machine-learning-based HPF. Sophisticated ML proxy models can be constructed and employed to deal with an extended type of input data such that improving the efficacy of data utilization. On the other hand, deep learning models designed to handle time-series data can gain more attention. Modeling approaches for multivariate time-series hydrocarbon production data using deep neural networks with similar functionality to LSTM may lead to more accurate and computationally efficient production forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
年轻书包完成签到 ,获得积分10
1秒前
1秒前
奋斗的暖阳完成签到,获得积分10
2秒前
tian完成签到,获得积分0
2秒前
4秒前
5秒前
li关闭了li文献求助
5秒前
ty完成签到,获得积分10
7秒前
7秒前
duyuqing发布了新的文献求助10
9秒前
my完成签到,获得积分10
9秒前
10秒前
梦璃完成签到 ,获得积分10
11秒前
小小针完成签到,获得积分20
15秒前
滴滴滴完成签到,获得积分10
15秒前
GUO完成签到 ,获得积分10
16秒前
张凯欣完成签到 ,获得积分10
16秒前
YLT完成签到,获得积分10
16秒前
17秒前
18秒前
19秒前
eric888应助哭泣的若翠采纳,获得100
19秒前
华仔应助子建采纳,获得10
19秒前
pp关闭了pp文献求助
19秒前
21秒前
level发布了新的文献求助10
21秒前
辛勤的飞烟完成签到,获得积分10
22秒前
77完成签到 ,获得积分10
22秒前
24秒前
光亮怜阳发布了新的文献求助10
24秒前
最落幕完成签到 ,获得积分10
24秒前
大个应助科研通管家采纳,获得10
25秒前
Tourist应助科研通管家采纳,获得10
25秒前
汉堡包应助张子琛采纳,获得30
25秒前
CodeCraft应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
元谷雪应助科研通管家采纳,获得10
25秒前
Tourist应助科研通管家采纳,获得10
25秒前
浮游应助科研通管家采纳,获得10
25秒前
华仔应助科研通管家采纳,获得10
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5224818
求助须知:如何正确求助?哪些是违规求助? 4396749
关于积分的说明 13684880
捐赠科研通 4261194
什么是DOI,文献DOI怎么找? 2338338
邀请新用户注册赠送积分活动 1335711
关于科研通互助平台的介绍 1291564